// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::Tensor; static void test_simple_patch() { Tensor tensor(2,3,5,7); tensor.setRandom(); Tensor single_pixel_patch; single_pixel_patch = tensor.extract_image_patches<1, 1>(); VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(single_pixel_patch.dimension(4), 7); for (int i = 0; i < tensor.size(); ++i) { VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); } Tensor entire_image_patch; entire_image_patch = tensor.extract_image_patches<3, 5>(); VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(entire_image_patch.dimension(4), 7); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 3; ++r) { for (int c = 0; c < 5; ++c) { for (int d = 0; d < 2; ++d) { for (int b = 0; b < 7; ++b) { float expected = 0.0f; if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) { expected = tensor(d, r-1+i, c-2+j, b); } VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId, b), expected); } } } } } } Tensor twod_patch; twod_patch = tensor.extract_image_patches<2, 2>(); VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(twod_patch.dimension(4), 7); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 2; ++r) { for (int c = 0; c < 2; ++c) { for (int d = 0; d < 2; ++d) { for (int b = 0; b < 7; ++b) { float expected = 0.0f; if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 3 && c-1+j < 5) { expected = tensor(d, r-1+i, c-1+j, b); } VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId, b), expected); } } } } } } } static void test_patch_no_extra_dim() { Tensor tensor(2,3,5); tensor.setRandom(); Tensor single_pixel_patch; single_pixel_patch = tensor.extract_image_patches<1, 1>(); VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5); for (int i = 0; i < tensor.size(); ++i) { VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); } Tensor entire_image_patch; entire_image_patch = tensor.extract_image_patches<3, 5>(); VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 3; ++r) { for (int c = 0; c < 5; ++c) { for (int d = 0; d < 2; ++d) { float expected = 0.0f; if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) { expected = tensor(d, r-1+i, c-2+j); } VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId), expected); } } } } } Tensor twod_patch; twod_patch = tensor.extract_image_patches<2, 2>(); VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 2; ++r) { for (int c = 0; c < 2; ++c) { for (int d = 0; d < 2; ++d) { float expected = 0.0f; if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 3 && c-1+j < 5) { expected = tensor(d, r-1+i, c-1+j); } VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId), expected); } } } } } } static void test_imagenet_patches() { // Test the code on typical configurations used by the 'imagenet' benchmarks at // https://github.com/soumith/convnet-benchmarks Tensor l_in(3, 128, 128, 128); l_in.setRandom(); Tensor l_out = l_in.extract_image_patches(11, 11); VERIFY_IS_EQUAL(l_out.dimension(0), 3); VERIFY_IS_EQUAL(l_out.dimension(1), 11); VERIFY_IS_EQUAL(l_out.dimension(2), 11); VERIFY_IS_EQUAL(l_out.dimension(3), 128*128); VERIFY_IS_EQUAL(l_out.dimension(4), 128); for (int b = 0; b < 128; ++b) { for (int i = 0; i < 128; ++i) { for (int j = 0; j < 128; ++j) { int patchId = i+128*j; for (int c = 0; c < 11; ++c) { for (int r = 0; r < 11; ++r) { for (int d = 0; d < 3; ++d) { float expected = 0.0f; if (r-5+i >= 0 && c-5+j >= 0 && r-5+i < 128 && c-5+j < 128) { expected = l_in(d, r-5+i, c-5+j, b); } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); } } } } } } l_in.resize(64, 64, 64, 128); l_in.setRandom(); l_out = l_in.extract_image_patches(9, 9); VERIFY_IS_EQUAL(l_out.dimension(0), 64); VERIFY_IS_EQUAL(l_out.dimension(1), 9); VERIFY_IS_EQUAL(l_out.dimension(2), 9); VERIFY_IS_EQUAL(l_out.dimension(3), 64*64); VERIFY_IS_EQUAL(l_out.dimension(4), 128); for (int b = 0; b < 128; ++b) { for (int i = 0; i < 64; ++i) { for (int j = 0; j < 64; ++j) { int patchId = i+64*j; for (int c = 0; c < 9; ++c) { for (int r = 0; r < 9; ++r) { for (int d = 0; d < 64; ++d) { float expected = 0.0f; if (r-4+i >= 0 && c-4+j >= 0 && r-4+i < 64 && c-4+j < 64) { expected = l_in(d, r-4+i, c-4+j, b); } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); } } } } } } l_in.resize(128, 16, 16, 128); l_in.setRandom(); l_out = l_in.extract_image_patches(7, 7); VERIFY_IS_EQUAL(l_out.dimension(0), 128); VERIFY_IS_EQUAL(l_out.dimension(1), 7); VERIFY_IS_EQUAL(l_out.dimension(2), 7); VERIFY_IS_EQUAL(l_out.dimension(3), 16*16); VERIFY_IS_EQUAL(l_out.dimension(4), 128); for (int b = 0; b < 128; ++b) { for (int i = 0; i < 16; ++i) { for (int j = 0; j < 16; ++j) { int patchId = i+16*j; for (int c = 0; c < 7; ++c) { for (int r = 0; r < 7; ++r) { for (int d = 0; d < 128; ++d) { float expected = 0.0f; if (r-3+i >= 0 && c-3+j >= 0 && r-3+i < 16 && c-3+j < 16) { expected = l_in(d, r-3+i, c-3+j, b); } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); } } } } } } l_in.resize(384, 13, 13, 128); l_in.setRandom(); l_out = l_in.extract_image_patches(3, 3); VERIFY_IS_EQUAL(l_out.dimension(0), 384); VERIFY_IS_EQUAL(l_out.dimension(1), 3); VERIFY_IS_EQUAL(l_out.dimension(2), 3); VERIFY_IS_EQUAL(l_out.dimension(3), 13*13); VERIFY_IS_EQUAL(l_out.dimension(4), 128); for (int b = 0; b < 128; ++b) { for (int i = 0; i < 13; ++i) { for (int j = 0; j < 13; ++j) { int patchId = i+13*j; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int d = 0; d < 384; ++d) { float expected = 0.0f; if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 13 && c-1+j < 13) { expected = l_in(d, r-1+i, c-1+j, b); } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); } } } } } } } void test_cxx11_tensor_image_patch() { CALL_SUBTEST(test_simple_patch()); CALL_SUBTEST(test_patch_no_extra_dim()); CALL_SUBTEST(test_imagenet_patches()); }