// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::Tensor; using Eigen::RowMajor; static void test_0d() { TensorFixedSize > scalar1; TensorFixedSize, RowMajor> scalar2; VERIFY_IS_EQUAL(scalar1.rank(), 0); VERIFY_IS_EQUAL(scalar1.size(), 1); VERIFY_IS_EQUAL(internal::array_prod(scalar1.dimensions()), 1); scalar1() = 7.0; scalar2() = 13.0; // Test against shallow copy. TensorFixedSize > copy = scalar1; VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); VERIFY_IS_APPROX(scalar1(), copy()); copy = scalar1; VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); VERIFY_IS_APPROX(scalar1(), copy()); TensorFixedSize > scalar3 = scalar1.sqrt(); TensorFixedSize, RowMajor> scalar4 = scalar2.sqrt(); VERIFY_IS_EQUAL(scalar3.rank(), 0); VERIFY_IS_APPROX(scalar3(), sqrtf(7.0)); VERIFY_IS_APPROX(scalar4(), sqrtf(13.0)); scalar3 = scalar1 + scalar2; VERIFY_IS_APPROX(scalar3(), 7.0f + 13.0f); } static void test_1d() { TensorFixedSize > vec1; TensorFixedSize, RowMajor> vec2; VERIFY_IS_EQUAL((vec1.size()), 6); // VERIFY_IS_EQUAL((vec1.dimensions()[0]), 6); // VERIFY_IS_EQUAL((vec1.dimension(0)), 6); vec1(0) = 4.0; vec2(0) = 0.0; vec1(1) = 8.0; vec2(1) = 1.0; vec1(2) = 15.0; vec2(2) = 2.0; vec1(3) = 16.0; vec2(3) = 3.0; vec1(4) = 23.0; vec2(4) = 4.0; vec1(5) = 42.0; vec2(5) = 5.0; // Test against shallow copy. TensorFixedSize > copy = vec1; VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); for (int i = 0; i < 6; ++i) { VERIFY_IS_APPROX(vec1(i), copy(i)); } copy = vec1; VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); for (int i = 0; i < 6; ++i) { VERIFY_IS_APPROX(vec1(i), copy(i)); } TensorFixedSize > vec3 = vec1.sqrt(); TensorFixedSize, RowMajor> vec4 = vec2.sqrt(); VERIFY_IS_EQUAL((vec3.size()), 6); VERIFY_IS_EQUAL(vec3.rank(), 1); // VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6); // VERIFY_IS_EQUAL((vec3.dimension(0)), 6); VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); VERIFY_IS_APPROX(vec4(0), sqrtf(0.0)); VERIFY_IS_APPROX(vec4(1), sqrtf(1.0)); VERIFY_IS_APPROX(vec4(2), sqrtf(2.0)); VERIFY_IS_APPROX(vec4(3), sqrtf(3.0)); VERIFY_IS_APPROX(vec4(4), sqrtf(4.0)); VERIFY_IS_APPROX(vec4(5), sqrtf(5.0)); vec3 = vec1 + vec2; VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); } static void test_tensor_map() { TensorFixedSize > vec1; TensorFixedSize, RowMajor> vec2; vec1(0) = 4.0; vec2(0) = 0.0; vec1(1) = 8.0; vec2(1) = 1.0; vec1(2) = 15.0; vec2(2) = 2.0; vec1(3) = 16.0; vec2(3) = 3.0; vec1(4) = 23.0; vec2(4) = 4.0; vec1(5) = 42.0; vec2(5) = 5.0; float data3[6]; TensorMap > > vec3(data3, 6); vec3 = vec1.sqrt() + vec2; VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f); VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f); VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f); VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f); VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f); } static void test_2d() { float data1[6]; TensorMap > > mat1(data1,2,3); float data2[6]; TensorMap, RowMajor> > mat2(data2,2,3); VERIFY_IS_EQUAL((mat1.size()), 2*3); VERIFY_IS_EQUAL(mat1.rank(), 2); // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); mat1(0,0) = 0.0; mat1(0,1) = 1.0; mat1(0,2) = 2.0; mat1(1,0) = 3.0; mat1(1,1) = 4.0; mat1(1,2) = 5.0; mat2(0,0) = -0.0; mat2(0,1) = -1.0; mat2(0,2) = -2.0; mat2(1,0) = -3.0; mat2(1,1) = -4.0; mat2(1,2) = -5.0; TensorFixedSize > mat3; TensorFixedSize, RowMajor> mat4; mat3 = mat1.abs(); mat4 = mat2.abs(); VERIFY_IS_EQUAL((mat3.size()), 2*3); // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); VERIFY_IS_APPROX(mat3(0,0), 0.0f); VERIFY_IS_APPROX(mat3(0,1), 1.0f); VERIFY_IS_APPROX(mat3(0,2), 2.0f); VERIFY_IS_APPROX(mat3(1,0), 3.0f); VERIFY_IS_APPROX(mat3(1,1), 4.0f); VERIFY_IS_APPROX(mat3(1,2), 5.0f); VERIFY_IS_APPROX(mat4(0,0), 0.0f); VERIFY_IS_APPROX(mat4(0,1), 1.0f); VERIFY_IS_APPROX(mat4(0,2), 2.0f); VERIFY_IS_APPROX(mat4(1,0), 3.0f); VERIFY_IS_APPROX(mat4(1,1), 4.0f); VERIFY_IS_APPROX(mat4(1,2), 5.0f); } static void test_3d() { TensorFixedSize > mat1; TensorFixedSize, RowMajor> mat2; VERIFY_IS_EQUAL((mat1.size()), 2*3*7); VERIFY_IS_EQUAL(mat1.rank(), 3); // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); // VERIFY_IS_EQUAL((mat1.dimension(2)), 7); float val = 0.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val += 1.0f; } } } TensorFixedSize > mat3; mat3 = mat1.sqrt(); TensorFixedSize, RowMajor> mat4; mat4 = mat2.sqrt(); VERIFY_IS_EQUAL((mat3.size()), 2*3*7); // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); // VERIFY_IS_EQUAL((mat3.dimension(2)), 7); val = 0.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), sqrtf(val)); VERIFY_IS_APPROX(mat4(i,j,k), sqrtf(val)); val += 1.0f; } } } } static void test_array() { TensorFixedSize > mat1; float val = 0.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; val += 1.0f; } } } TensorFixedSize > mat3; mat3 = mat1.pow(3.5f); val = 0.0f; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), powf(val, 3.5f)); val += 1.0f; } } } } EIGEN_DECLARE_TEST(cxx11_tensor_fixed_size) { CALL_SUBTEST(test_0d()); CALL_SUBTEST(test_1d()); CALL_SUBTEST(test_tensor_map()); CALL_SUBTEST(test_2d()); CALL_SUBTEST(test_3d()); CALL_SUBTEST(test_array()); }