// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::Tensor; template struct InsertZeros { DSizes dimensions(const TensorType& input) const { DSizes result; result[0] = input.dimension(0) * 2; result[1] = input.dimension(1) * 2; return result; } template void eval(const TensorType& input, Output& output, const Device& device) const { array strides; strides[0] = 2; strides[1] = 2; output.stride(strides).device(device) = input; Eigen::DSizes offsets(1,1); Eigen::DSizes extents(output.dimension(0)-1, output.dimension(1)-1); output.slice(offsets, extents).stride(strides).device(device) = input.constant(0.0f); } }; template static void test_custom_unary_op_sycl(const Eigen::SyclDevice &sycl_device) { IndexType sizeDim1 = 3; IndexType sizeDim2 = 5; Eigen::array tensorRange = {{sizeDim1, sizeDim2}}; Eigen::array tensorResultRange = {{6, 10}}; Eigen::Tensor in1(tensorRange); Eigen::Tensor out(tensorResultRange); DataType * gpu_in1_data = static_cast(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(DataType))); DataType * gpu_out_data = static_cast(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType))); typedef Eigen::TensorMap > TensorType; TensorType gpu_in1(gpu_in1_data, tensorRange); TensorType gpu_out(gpu_out_data, tensorResultRange); in1.setRandom(); sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.dimensions().TotalSize())*sizeof(DataType)); gpu_out.device(sycl_device) = gpu_in1.customOp(InsertZeros()); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType)); VERIFY_IS_EQUAL(out.dimension(0), 6); VERIFY_IS_EQUAL(out.dimension(1), 10); for (int i = 0; i < 6; i+=2) { for (int j = 0; j < 10; j+=2) { VERIFY_IS_EQUAL(out(i, j), in1(i/2, j/2)); } } for (int i = 1; i < 6; i+=2) { for (int j = 1; j < 10; j+=2) { VERIFY_IS_EQUAL(out(i, j), 0); } } sycl_device.deallocate(gpu_in1_data); sycl_device.deallocate(gpu_out_data); } template struct BatchMatMul { DSizes dimensions(const TensorType& input1, const TensorType& input2) const { DSizes result; result[0] = input1.dimension(0); result[1] = input2.dimension(1); result[2] = input2.dimension(2); return result; } template void eval(const TensorType& input1, const TensorType& input2, Output& output, const Device& device) const { typedef typename TensorType::DimensionPair DimPair; array dims; dims[0] = DimPair(1, 0); for (int64_t i = 0; i < output.dimension(2); ++i) { output.template chip<2>(i).device(device) = input1.template chip<2>(i).contract(input2.template chip<2>(i), dims); } } }; template static void test_custom_binary_op_sycl(const Eigen::SyclDevice &sycl_device) { Eigen::array tensorRange1 = {{2, 3, 5}}; Eigen::array tensorRange2 = {{3,7,5}}; Eigen::array tensorResultRange = {{2, 7, 5}}; Eigen::Tensor in1(tensorRange1); Eigen::Tensor in2(tensorRange2); Eigen::Tensor out(tensorResultRange); DataType * gpu_in1_data = static_cast(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(DataType))); DataType * gpu_in2_data = static_cast(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(DataType))); DataType * gpu_out_data = static_cast(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType))); typedef Eigen::TensorMap > TensorType; TensorType gpu_in1(gpu_in1_data, tensorRange1); TensorType gpu_in2(gpu_in2_data, tensorRange2); TensorType gpu_out(gpu_out_data, tensorResultRange); in1.setRandom(); in2.setRandom(); sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.dimensions().TotalSize())*sizeof(DataType)); sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(DataType)); gpu_out.device(sycl_device) = gpu_in1.customOp(gpu_in2, BatchMatMul()); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType)); for (IndexType i = 0; i < 5; ++i) { typedef typename Eigen::Tensor::DimensionPair DimPair; array dims; dims[0] = DimPair(1, 0); Eigen::Tensor reference = in1.template chip<2>(i).contract(in2.template chip<2>(i), dims); TensorRef > val = out.template chip<2>(i); for (IndexType j = 0; j < 2; ++j) { for (IndexType k = 0; k < 7; ++k) { VERIFY_IS_APPROX(val(j, k), reference(j, k)); } } } sycl_device.deallocate(gpu_in1_data); sycl_device.deallocate(gpu_in2_data); sycl_device.deallocate(gpu_out_data); } template void custom_op_perDevice(Dev_selector s){ QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_custom_unary_op_sycl(sycl_device); test_custom_unary_op_sycl(sycl_device); test_custom_binary_op_sycl(sycl_device); test_custom_binary_op_sycl(sycl_device); } EIGEN_DECLARE_TEST(cxx11_tensor_custom_op_sycl) { for (const auto& device :Eigen::get_sycl_supported_devices()) { CALL_SUBTEST(custom_op_perDevice(device)); } }