// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::DefaultDevice; using Eigen::Tensor; typedef Tensor::DimensionPair DimPair; static void test_evals() { Tensor mat1(2, 3); Tensor mat2(2, 3); Tensor mat3(3, 2); mat1.setRandom(); mat2.setRandom(); mat3.setRandom(); Tensor mat4(3,3); mat4.setZero(); Eigen::array dims3({{DimPair(0, 0)}}); typedef TensorEvaluator Evaluator; Evaluator eval(mat1.contract(mat2, dims3), DefaultDevice()); eval.evalTo(mat4.data()); EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); VERIFY_IS_EQUAL(eval.dimensions()[0], 3); VERIFY_IS_EQUAL(eval.dimensions()[1], 3); VERIFY_IS_APPROX(mat4(0,0), mat1(0,0)*mat2(0,0) + mat1(1,0)*mat2(1,0)); VERIFY_IS_APPROX(mat4(0,1), mat1(0,0)*mat2(0,1) + mat1(1,0)*mat2(1,1)); VERIFY_IS_APPROX(mat4(0,2), mat1(0,0)*mat2(0,2) + mat1(1,0)*mat2(1,2)); VERIFY_IS_APPROX(mat4(1,0), mat1(0,1)*mat2(0,0) + mat1(1,1)*mat2(1,0)); VERIFY_IS_APPROX(mat4(1,1), mat1(0,1)*mat2(0,1) + mat1(1,1)*mat2(1,1)); VERIFY_IS_APPROX(mat4(1,2), mat1(0,1)*mat2(0,2) + mat1(1,1)*mat2(1,2)); VERIFY_IS_APPROX(mat4(2,0), mat1(0,2)*mat2(0,0) + mat1(1,2)*mat2(1,0)); VERIFY_IS_APPROX(mat4(2,1), mat1(0,2)*mat2(0,1) + mat1(1,2)*mat2(1,1)); VERIFY_IS_APPROX(mat4(2,2), mat1(0,2)*mat2(0,2) + mat1(1,2)*mat2(1,2)); Tensor mat5(2,2); mat5.setZero(); Eigen::array dims4({{DimPair(1, 1)}}); typedef TensorEvaluator Evaluator2; Evaluator2 eval2(mat1.contract(mat2, dims4), DefaultDevice()); eval2.evalTo(mat5.data()); EIGEN_STATIC_ASSERT(Evaluator2::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); VERIFY_IS_EQUAL(eval2.dimensions()[1], 2); VERIFY_IS_APPROX(mat5(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(0,1) + mat1(0,2)*mat2(0,2)); VERIFY_IS_APPROX(mat5(0,1), mat1(0,0)*mat2(1,0) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(1,2)); VERIFY_IS_APPROX(mat5(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(0,1) + mat1(1,2)*mat2(0,2)); VERIFY_IS_APPROX(mat5(1,1), mat1(1,0)*mat2(1,0) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(1,2)); Tensor mat6(2,2); mat6.setZero(); Eigen::array dims6({{DimPair(1, 0)}}); typedef TensorEvaluator Evaluator3; Evaluator3 eval3(mat1.contract(mat3, dims6), DefaultDevice()); eval3.evalTo(mat6.data()); EIGEN_STATIC_ASSERT(Evaluator3::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); VERIFY_IS_EQUAL(eval3.dimensions()[0], 2); VERIFY_IS_EQUAL(eval3.dimensions()[1], 2); VERIFY_IS_APPROX(mat6(0,0), mat1(0,0)*mat3(0,0) + mat1(0,1)*mat3(1,0) + mat1(0,2)*mat3(2,0)); VERIFY_IS_APPROX(mat6(0,1), mat1(0,0)*mat3(0,1) + mat1(0,1)*mat3(1,1) + mat1(0,2)*mat3(2,1)); VERIFY_IS_APPROX(mat6(1,0), mat1(1,0)*mat3(0,0) + mat1(1,1)*mat3(1,0) + mat1(1,2)*mat3(2,0)); VERIFY_IS_APPROX(mat6(1,1), mat1(1,0)*mat3(0,1) + mat1(1,1)*mat3(1,1) + mat1(1,2)*mat3(2,1)); } static void test_scalar() { Tensor vec1({6}); Tensor vec2({6}); vec1.setRandom(); vec2.setRandom(); Tensor scalar(1); scalar.setZero(); Eigen::array dims({{DimPair(0, 0)}}); typedef TensorEvaluator Evaluator; Evaluator eval(vec1.contract(vec2, dims), DefaultDevice()); eval.evalTo(scalar.data()); EIGEN_STATIC_ASSERT(Evaluator::NumDims==1ul, YOU_MADE_A_PROGRAMMING_MISTAKE); float expected = 0.0f; for (int i = 0; i < 6; ++i) { expected += vec1(i) * vec2(i); } VERIFY_IS_APPROX(scalar(0), expected); } static void test_multidims() { Tensor mat1(2, 2, 2); Tensor mat2(2, 2, 2, 2); mat1.setRandom(); mat2.setRandom(); Tensor mat3(2, 2, 2); mat3.setZero(); Eigen::array dims({{DimPair(1, 2), DimPair(2, 3)}}); typedef TensorEvaluator Evaluator; Evaluator eval(mat1.contract(mat2, dims), DefaultDevice()); eval.evalTo(mat3.data()); EIGEN_STATIC_ASSERT(Evaluator::NumDims==3ul, YOU_MADE_A_PROGRAMMING_MISTAKE); VERIFY_IS_EQUAL(eval.dimensions()[0], 2); VERIFY_IS_EQUAL(eval.dimensions()[1], 2); VERIFY_IS_EQUAL(eval.dimensions()[2], 2); VERIFY_IS_APPROX(mat3(0,0,0), mat1(0,0,0)*mat2(0,0,0,0) + mat1(0,1,0)*mat2(0,0,1,0) + mat1(0,0,1)*mat2(0,0,0,1) + mat1(0,1,1)*mat2(0,0,1,1)); VERIFY_IS_APPROX(mat3(0,0,1), mat1(0,0,0)*mat2(0,1,0,0) + mat1(0,1,0)*mat2(0,1,1,0) + mat1(0,0,1)*mat2(0,1,0,1) + mat1(0,1,1)*mat2(0,1,1,1)); VERIFY_IS_APPROX(mat3(0,1,0), mat1(0,0,0)*mat2(1,0,0,0) + mat1(0,1,0)*mat2(1,0,1,0) + mat1(0,0,1)*mat2(1,0,0,1) + mat1(0,1,1)*mat2(1,0,1,1)); VERIFY_IS_APPROX(mat3(0,1,1), mat1(0,0,0)*mat2(1,1,0,0) + mat1(0,1,0)*mat2(1,1,1,0) + mat1(0,0,1)*mat2(1,1,0,1) + mat1(0,1,1)*mat2(1,1,1,1)); VERIFY_IS_APPROX(mat3(1,0,0), mat1(1,0,0)*mat2(0,0,0,0) + mat1(1,1,0)*mat2(0,0,1,0) + mat1(1,0,1)*mat2(0,0,0,1) + mat1(1,1,1)*mat2(0,0,1,1)); VERIFY_IS_APPROX(mat3(1,0,1), mat1(1,0,0)*mat2(0,1,0,0) + mat1(1,1,0)*mat2(0,1,1,0) + mat1(1,0,1)*mat2(0,1,0,1) + mat1(1,1,1)*mat2(0,1,1,1)); VERIFY_IS_APPROX(mat3(1,1,0), mat1(1,0,0)*mat2(1,0,0,0) + mat1(1,1,0)*mat2(1,0,1,0) + mat1(1,0,1)*mat2(1,0,0,1) + mat1(1,1,1)*mat2(1,0,1,1)); VERIFY_IS_APPROX(mat3(1,1,1), mat1(1,0,0)*mat2(1,1,0,0) + mat1(1,1,0)*mat2(1,1,1,0) + mat1(1,0,1)*mat2(1,1,0,1) + mat1(1,1,1)*mat2(1,1,1,1)); } static void test_expr() { Tensor mat1(2, 3); Tensor mat2(3, 2); mat1.setRandom(); mat2.setRandom(); Tensor mat3(2,2); Eigen::array dims({{DimPair(1, 0)}}); mat3 = mat1.contract(mat2, dims); VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); } void test_cxx11_tensor_contraction() { CALL_SUBTEST(test_evals()); CALL_SUBTEST(test_scalar()); CALL_SUBTEST(test_multidims()); CALL_SUBTEST(test_expr()); }