// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include #include #include #include #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; template void static test_sycl_contraction(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); // with these dimensions, the output has 300 * 140 elements, which is // more than 30 * 1024, which is the number of threads in blocks on // a 15 SM GK110 GPU Tensor t_left(m_size, k_size); Tensor t_right(k_size, n_size); Tensor t_result(m_size, n_size); Tensor t_result_gpu(m_size, n_size); Eigen::array dims = {{DimPair(1, 0)}}; Eigen::array left_dims = {{m_size, k_size}}; Eigen::array right_dims = {{k_size, n_size}}; Eigen::array result_dims = {{m_size, n_size}}; t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = t_result.size() * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result, result_dims); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); for (IndexType i = 0; i < t_result.size(); i++) { if (static_cast(std::fabs(static_cast( t_result(i) - t_result_gpu(i)))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) { continue; } std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", mismatch detected at IndexType " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void test_sycl_contraction_m(const Device &sycl_device) { for (IndexType k = 32; k < 256; k++) { test_sycl_contraction(sycl_device, k, 128, 128); } } template void test_sycl_contraction_k(const Device &sycl_device) { for (IndexType k = 32; k < 256; k++) { test_sycl_contraction(sycl_device, 128, k, 128); } } template void test_sycl_contraction_n(const Device &sycl_device) { for (IndexType k = 32; k < 256; k++) { test_sycl_contraction(sycl_device, 128, 128, k); } } template void test_sycl_contraction_sizes(const Device &sycl_device) { IndexType m_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; IndexType n_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; IndexType k_sizes[] = {31, 39, 63, 64, 65, 95, 96, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; for (IndexType i = 0; i < 15; i++) { for (IndexType j = 0; j < 15; j++) { for (IndexType k = 0; k < 17; k++) { test_sycl_contraction( sycl_device, m_sizes[i], n_sizes[j], k_sizes[k]); } } } } template void static test_no_out_of_bounds(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); Tensor t_left(m_size, k_size); Tensor t_right(k_size, n_size); Tensor t_result(m_size, n_size); Eigen::array dims = {{DimPair(1, 0)}}; Eigen::array left_dims = {{m_size, k_size}}; Eigen::array right_dims = {{k_size, n_size}}; Eigen::array result_dims = {{m_size, n_size}}; t_left.setRandom(); t_right.setRandom(); // Allocate buffers twice as big to check for invalid read and write auto padded_left_size = 2 * t_left.size(); auto padded_right_size = 2 * t_right.size(); auto padded_result_size = 2 * t_result.size(); std::size_t t_left_bytes = padded_left_size * sizeof(DataType); std::size_t t_right_bytes = padded_right_size * sizeof(DataType); std::size_t t_result_bytes = padded_result_size * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); // TensorMaps are still of the same size than the Tensors Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result, result_dims); // Write nan after the actual buffer to propagate nans everywhere in case of // invalid reads DataType nan = std::numeric_limits::quiet_NaN(); auto host_left_data = new DataType[padded_left_size]; std::copy_n(t_left.data(), t_left.size(), host_left_data); std::fill_n(host_left_data + t_left.size(), t_left.size(), nan); auto host_right_data = new DataType[padded_right_size]; std::copy_n(t_right.data(), t_right.size(), host_right_data); std::fill_n(host_right_data + t_right.size(), t_right.size(), nan); auto host_result_data = new DataType[padded_result_size]; std::fill_n(host_result_data, padded_result_size, nan); sycl_device.memcpyHostToDevice(d_t_left, host_left_data, t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, host_right_data, t_right_bytes); sycl_device.memcpyHostToDevice(d_t_result, host_result_data, t_result_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(host_result_data, d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); for (IndexType i = 0; i < t_result.size(); i++) { if (static_cast(std::fabs(static_cast( t_result(i) - host_result_data[i]))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(i), host_result_data[i], error_threshold)) { continue; } if (std::isnan(host_result_data[i])) { std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", invalid read detected at IndexType " << i << ": " << t_result(i) << " vs " << host_result_data[i] << std::endl; } else { std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", mismatch detected at IndexType " << i << ": " << t_result(i) << " vs " << host_result_data[i] << std::endl; } VERIFY_IS_APPROX(host_result_data[i], t_result(i)); } // Make sure that the rest of the result is still nans for (IndexType i = t_result.size(); i < padded_result_size; i++) { if (std::isnan(host_result_data[i])) { continue; } std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", invalid write detected at IndexType " << i << ": " << host_result_data[i] << std::endl; VERIFY_IS_APPROX(host_result_data[i], t_result(i)); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); delete[] host_left_data; delete[] host_right_data; delete[] host_result_data; } template void test_scalar(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { // std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << // ")" << std::endl; // with these dimensions, the output has 300 * 140 elements, which is // more than 30 * 1024, which is the number of threads in blocks on // a 15 SM GK110 GPU typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); Tensor t_left(m_size, k_size); Tensor t_right(k_size, n_size); Tensor t_result; Tensor t_result_gpu; Eigen::array dims = {{DimPair(0, 0), DimPair(1, 1)}}; Eigen::array left_dims = {{m_size, k_size}}; Eigen::array right_dims = {{k_size, n_size}}; t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); if (static_cast(std::fabs(static_cast( t_result() - t_result_gpu()))) > error_threshold && !Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) { std::cout << "K: " << k_size << ", N: " << n_size << ", M: " << m_size << " : mismatch detected: " << t_result() << " vs " << t_result_gpu() << std::endl; VERIFY_IS_APPROX(t_result_gpu(), t_result()); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void contraction_batch(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size, IndexType m_batch, IndexType start, IndexType limit) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); typedef Eigen::array TensorDim; typedef Eigen::Tensor TensorType; TensorDim left_dims = {{m_batch, k_size, m_size}}; TensorDim right_dims = {{m_batch, n_size, k_size}}; TensorDim res_dims = {{m_batch, m_size, n_size}}; Eigen::array contract_pairs = {{DimPair(0, 1)}}; TensorType t_left(left_dims); TensorType t_right(right_dims); TensorType t_result_gpu(res_dims); TensorType t_result(res_dims); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = t_result.size() * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap gpu_t_left(d_t_left, left_dims); Eigen::TensorMap gpu_t_right(d_t_right, right_dims); Eigen::TensorMap gpu_t_result(d_t_result, res_dims); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); for (int i = start; i < limit; ++i) { auto x = gpu_t_left.template chip<0>(i); auto y = gpu_t_right.template chip<0>(i); auto z = gpu_t_result.template chip<0>(i); z.device(sycl_device) = x.contract(y, contract_pairs); } sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); for (int i = start; i < limit; ++i) { auto x = t_left.template chip<0>(i); auto y = t_right.template chip<0>(i); auto z = t_result.template chip<0>(i); z = x.contract(y, contract_pairs); } for (IndexType i = 0; i < t_result.size(); i++) { if (static_cast(std::fabs(static_cast( t_result(i) - t_result_gpu(i)))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) { continue; } std::cout << "mismatch detected at IndexType " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void contraction_rhs_transposed(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); Eigen::array left_dims = {{m_size, k_size}}; Eigen::array right_dims = {{n_size, k_size}}; Eigen::array res_dims = {{m_size, n_size}}; Eigen::array dims = {{DimPair(1, 1)}}; Tensor t_left(left_dims); Tensor t_right(right_dims); Tensor t_result_gpu(res_dims); Tensor t_result(res_dims); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = t_result.size() * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result, res_dims); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); for (IndexType j = 0; j < m_size; j++) { for (IndexType i = 0; i < n_size; i++) { if (static_cast(std::fabs(static_cast( t_result(j, i) - t_result_gpu(j, i)))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(j, i), t_result_gpu(j, i), error_threshold)) { continue; } std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", mismatch detected at IndexType m: " << j << " n: " << i << " CPU : " << t_result(j, i) << " vs SYCL:" << t_result_gpu(j, i) << std::endl; VERIFY_IS_APPROX(t_result_gpu(j, i), t_result(j, i)); } } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void contraction_lhs_transposed(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); Eigen::array left_dims = {{k_size, m_size}}; Eigen::array right_dims = {{k_size, n_size}}; Eigen::array res_dims = {{m_size, n_size}}; Eigen::array dims = {{DimPair(0, 0)}}; Tensor t_left(left_dims); Tensor t_right(right_dims); Tensor t_result_gpu(res_dims); Tensor t_result(res_dims); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = t_result.size() * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result, res_dims); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); for (IndexType i = 0; i < t_result.size(); i++) { if (static_cast(std::fabs(static_cast( t_result(i) - t_result_gpu(i)))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) { continue; } std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", mismatch detected at IndexType " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void contraction_both_transposed(const Device &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size) { typedef typename Tensor::DimensionPair DimPair; static const DataType error_threshold = DataType(1e-4); Eigen::array left_dims = {{k_size, m_size}}; Eigen::array right_dims = {{n_size, k_size}}; Eigen::array res_dims = {{m_size, n_size}}; Eigen::array dims = {{DimPair(0, 1)}}; Tensor t_left(left_dims); Tensor t_right(right_dims); Tensor t_result_gpu(res_dims); Tensor t_result(res_dims); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(DataType); std::size_t t_right_bytes = t_right.size() * sizeof(DataType); std::size_t t_result_bytes = t_result.size() * sizeof(DataType); DataType *d_t_left = static_cast(sycl_device.allocate(t_left_bytes)); DataType *d_t_right = static_cast(sycl_device.allocate(t_right_bytes)); DataType *d_t_result = static_cast(sycl_device.allocate(t_result_bytes)); Eigen::TensorMap> gpu_t_left(d_t_left, left_dims); Eigen::TensorMap> gpu_t_right(d_t_right, right_dims); Eigen::TensorMap> gpu_t_result(d_t_result, res_dims); sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes); sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes); gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims); sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result, t_result_bytes); t_result = t_left.contract(t_right, dims); for (IndexType i = 0; i < t_result.size(); i++) { if (static_cast(std::fabs(static_cast( t_result(i) - t_result_gpu(i)))) < error_threshold) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) { continue; } std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size << ", mismatch detected at IndexType " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; VERIFY_IS_APPROX(t_result_gpu(i), t_result(i)); } sycl_device.deallocate(d_t_left); sycl_device.deallocate(d_t_right); sycl_device.deallocate(d_t_result); } template void inline tensorOutofBound(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Test out of bound for Tensor-Tensor test_no_out_of_bounds(sycl_device, 10, 1024, 1024); test_no_out_of_bounds(sycl_device, 1024, 1024, 4096); test_no_out_of_bounds(sycl_device, 4096, 1024, 2048); test_no_out_of_bounds(sycl_device, 784, 2048, 1024); test_no_out_of_bounds(sycl_device, 2048, 1024, 784); test_no_out_of_bounds(sycl_device, 10, 1024, 10); test_no_out_of_bounds(sycl_device, 513, 4096, 513); test_no_out_of_bounds(sycl_device, 783, 1024, 783); test_no_out_of_bounds(sycl_device, 784, 2048, 784); test_no_out_of_bounds(sycl_device, 11, 1024, 11); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor out of bound tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorTensor(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction(sycl_device, 128, 128, 128); test_sycl_contraction(sycl_device, 128, 128, 128); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorTensor_m(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction_m(sycl_device); test_sycl_contraction_m(sycl_device); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorTensor_n(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction_n(sycl_device); test_sycl_contraction_n(sycl_device); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorTensor_k(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); test_sycl_contraction_k(sycl_device); test_sycl_contraction_k(sycl_device); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorTensor_sizes(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction_sizes(sycl_device); test_sycl_contraction_sizes(sycl_device); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "tensor tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline vectorVector(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // VECTOR-VECTOR test_sycl_contraction(sycl_device, 1025, 1, 1025); test_sycl_contraction(sycl_device, 1025, 1, 1025); test_sycl_contraction(sycl_device, 1024, 1, 1024); test_sycl_contraction(sycl_device, 1024, 1, 1024); test_sycl_contraction(sycl_device, 1023, 1, 1023); test_sycl_contraction(sycl_device, 1023, 1, 1023); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "contracted tensor tests finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline vectorTensor(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Vector-Tensor test_sycl_contraction(sycl_device, 1, 1025, 1025); test_sycl_contraction(sycl_device, 1, 1025, 1025); test_sycl_contraction(sycl_device, 1, 1024, 1024); test_sycl_contraction(sycl_device, 1, 1024, 1024); test_sycl_contraction(sycl_device, 1, 1023, 1023); test_sycl_contraction(sycl_device, 1, 1023, 1023); test_sycl_contraction(sycl_device, 1, 4097, 4097); test_sycl_contraction(sycl_device, 1, 4097, 4097); test_sycl_contraction(sycl_device, 1, 4096, 4096); test_sycl_contraction(sycl_device, 1, 4096, 4096); test_sycl_contraction(sycl_device, 1, 4095, 4095); test_sycl_contraction(sycl_device, 1, 4095, 4095); test_sycl_contraction(sycl_device, 1, 802816, 32); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorVector(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Matrix-Vector test_sycl_contraction(sycl_device, 1025, 1025, 1); test_sycl_contraction(sycl_device, 1125, 1025, 1); test_sycl_contraction(sycl_device, 1224, 1024, 1); test_sycl_contraction(sycl_device, 1024, 1024, 1); test_sycl_contraction(sycl_device, 1023, 1023, 1); test_sycl_contraction(sycl_device, 1023, 1023, 1); test_sycl_contraction(sycl_device, 4097, 4197, 1); test_sycl_contraction(sycl_device, 4097, 4097, 1); test_sycl_contraction(sycl_device, 4096, 4096, 1); test_sycl_contraction(sycl_device, 4096, 8196, 1); test_sycl_contraction(sycl_device, 4095, 4095, 1); test_sycl_contraction(sycl_device, 4095, 4095, 1); // If the GEMV disabled it will creates one kernel to calculate the contraction. // Therefore the acumuation of float number will overflow the precision // threshold for float and cause the test to fail. While it the GMV multiple // kernel will be created and each one run the overflow of accumutation breaks // among the kernels. #ifndef EIGEN_SYCL_DISABLE_GEMV test_sycl_contraction(sycl_device, 32, 802032, 1); #endif end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensorScalar(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // SCALAR Contraction test_scalar(sycl_device, 127, 127, 127); test_scalar(sycl_device, 127, 127, 127); test_scalar(sycl_device, 128, 128, 128); test_scalar(sycl_device, 128, 128, 128); test_scalar(sycl_device, 129, 129, 129); test_scalar(sycl_device, 129, 129, 129); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline skinnyTensor_row(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction(sycl_device, 16, 4, 16); test_sycl_contraction(sycl_device, 257, 131073, 257); test_sycl_contraction(sycl_device, 256, 131072, 256); test_sycl_contraction(sycl_device, 16, 131073, 16); test_sycl_contraction(sycl_device, 17, 131072, 17); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline skinnyTensor_col(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); // Tensor Tensor Contraction test_sycl_contraction(sycl_device, 16, 4, 16); test_sycl_contraction(sycl_device, 257, 131073, 257); test_sycl_contraction(sycl_device, 256, 131072, 256); test_sycl_contraction(sycl_device, 16, 131073, 16); test_sycl_contraction(sycl_device, 17, 131072, 17); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensor_contraction_batch_per_device(const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); contraction_batch(sycl_device, 64, 75, 30, 4, 0, 4); contraction_batch(sycl_device, 64, 75, 30, 4, 0, 4); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensor_contraction_lhs_transposed_per_device( const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); contraction_lhs_transposed(sycl_device, 8, 4, 8); contraction_lhs_transposed(sycl_device, 32, 8, 32); contraction_lhs_transposed(sycl_device, 64, 16, 64); contraction_lhs_transposed(sycl_device, 784, 2048, 1024); contraction_lhs_transposed(sycl_device, 1024, 10, 1024); contraction_lhs_transposed(sycl_device, 4096, 1024, 1024); contraction_lhs_transposed(sycl_device, 2048, 4096, 1024); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensor_contraction_rhs_transposed_per_device( const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); contraction_rhs_transposed(sycl_device, 16, 4, 16); contraction_rhs_transposed(sycl_device, 17, 5, 17); contraction_rhs_transposed(sycl_device, 32, 8, 32); contraction_rhs_transposed(sycl_device, 64, 16, 64); contraction_rhs_transposed(sycl_device, 10, 1024, 1024); contraction_rhs_transposed(sycl_device, 1024, 1024, 4096); contraction_rhs_transposed(sycl_device, 4096, 1024, 2048); contraction_rhs_transposed(sycl_device, 2048, 1024, 784); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } template void inline tensor_contraction_both_transposed_per_device( const Dev &sycl_device) { typedef float DataType; typedef int64_t IndexType; std::chrono::time_point start, end; start = std::chrono::system_clock::now(); contraction_both_transposed(sycl_device, 17, 5, 17); contraction_both_transposed(sycl_device, 32, 8, 32); contraction_both_transposed(sycl_device, 64, 16, 64); end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_seconds.count() << "s\n"; } EIGEN_DECLARE_TEST(cxx11_tensor_contract_sycl) { for (const auto &device : Eigen::get_sycl_supported_devices()) { std::cout << "Running on " << device.template get_info() << std::endl; QueueInterface queueInterface(device); auto sycl_device = Eigen::SyclDevice(&queueInterface); CALL_SUBTEST_1(tensorOutofBound(sycl_device)); CALL_SUBTEST_2(tensorTensor(sycl_device)); CALL_SUBTEST_2(tensorTensor_m(sycl_device)); CALL_SUBTEST_2(tensorTensor_n(sycl_device)); CALL_SUBTEST_2(tensorTensor_k(sycl_device)); CALL_SUBTEST_2(tensorTensor_sizes(sycl_device)); CALL_SUBTEST_3(vectorVector(sycl_device)); CALL_SUBTEST_4(vectorTensor(sycl_device)); CALL_SUBTEST_5(tensorVector(sycl_device)); CALL_SUBTEST_6(tensorScalar(sycl_device)); CALL_SUBTEST_7(skinnyTensor_row(sycl_device)); CALL_SUBTEST_7(skinnyTensor_col(sycl_device)); CALL_SUBTEST_8(tensor_contraction_batch_per_device(sycl_device)); CALL_SUBTEST_9(tensor_contraction_lhs_transposed_per_device(sycl_device)); CALL_SUBTEST_10(tensor_contraction_rhs_transposed_per_device(sycl_device)); CALL_SUBTEST_11(tensor_contraction_both_transposed_per_device(sycl_device)); } }