// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // Copyright (C) 2014 Navdeep Jaitly // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_cuda #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_GPU #include "main.h" #include using Eigen::Tensor; typedef Tensor::DimensionPair DimPair; template static void test_cuda_contraction(int m_size, int k_size, int n_size) { cout<<"Calling with ("< t_left(Eigen::array(m_size, k_size)); Tensor t_right(Eigen::array(k_size, n_size)); Tensor t_result(Eigen::array(m_size, n_size)); Tensor t_result_gpu(Eigen::array(m_size, n_size)); Eigen::array dims(DimPair(1, 0)); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(float); std::size_t t_right_bytes = t_right.size() * sizeof(float); std::size_t t_result_bytes = t_result.size() * sizeof(float); float* d_t_left; float* d_t_right; float* d_t_result; cudaMalloc((void**)(&d_t_left), t_left_bytes); cudaMalloc((void**)(&d_t_right), t_right_bytes); cudaMalloc((void**)(&d_t_result), t_result_bytes); cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); cudaStream_t stream; assert(cudaStreamCreate(&stream) == cudaSuccess); Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_t_left(d_t_left, Eigen::array(m_size, k_size)); Eigen::TensorMap > gpu_t_right(d_t_right, Eigen::array(k_size, n_size)); Eigen::TensorMap > gpu_t_result(d_t_result, Eigen::array(m_size, n_size)); gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); t_result = t_left.contract(t_right, dims); cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) { if (fabs(t_result.data()[i] - t_result_gpu.data()[i]) >= 1e-4) { cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << t_result_gpu.data()[i] << endl; assert(false); } } cudaFree((void*)d_t_left); cudaFree((void*)d_t_right); cudaFree((void*)d_t_result); } void test_cxx11_tensor_cuda() { cout<<"Calling contraction tests"<(128, 128, 128)); CALL_SUBTEST(test_cuda_contraction(128, 128, 128)); for (int k = 32; k < 256; k++) { CALL_SUBTEST(test_cuda_contraction(128, k, 128)); CALL_SUBTEST(test_cuda_contraction(128, k, 128)); } for (int k = 32; k < 256; k++) { CALL_SUBTEST(test_cuda_contraction(128, 128, k)); CALL_SUBTEST(test_cuda_contraction(128, 128, k)); } for (int k = 32; k < 256; k++) { CALL_SUBTEST(test_cuda_contraction(k, 128, 128)); CALL_SUBTEST(test_cuda_contraction(k, 128, 128)); } int m_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025 }; int n_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025 }; int k_sizes[] = { 31, 39, 63, 64, 65, 95, 96, 127, 129, 255, 257, 511, 512, 513, 1023, 1024, 1025}; for (int i = 0; i <15; i++) for (int j = 0; j < 15; j++) for (int k = 0; k < 17; k++) { CALL_SUBTEST(test_cuda_contraction(m_sizes[i], n_sizes[j], k_sizes[k])); CALL_SUBTEST(test_cuda_contraction(m_sizes[i], n_sizes[j], k_sizes[k])); } }