// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::Tensor; template static void test_static_chip_sycl(const Eigen::SyclDevice& sycl_device) { IndexType sizeDim1 = 2; IndexType sizeDim2 = 3; IndexType sizeDim3 = 5; IndexType sizeDim4 = 7; IndexType sizeDim5 = 11; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; array chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; Tensor tensor(tensorRange); Tensor chip1(chip1TensorRange); tensor.setRandom(); const size_t tensorBuffSize =tensor.size()*sizeof(DataType); const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); DataType* gpu_data_tensor = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_chip1 = static_cast(sycl_device.allocate(chip1TensorBuffSize)); TensorMap> gpu_tensor(gpu_data_tensor, tensorRange); TensorMap> gpu_chip1(gpu_data_chip1, chip1TensorRange); sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(1l); sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim2; ++i) { for (IndexType j = 0; j < sizeDim3; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l)); } } } } array chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; Tensor chip2(chip2TensorRange); const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType); DataType* gpu_data_chip2 = static_cast(sycl_device.allocate(chip2TensorBuffSize)); TensorMap> gpu_chip2(gpu_data_chip2, chip2TensorRange); gpu_chip2.device(sycl_device)=gpu_tensor.template chip<1l>(1l); sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim3; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l)); } } } } array chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; Tensor chip3(chip3TensorRange); const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType); DataType* gpu_data_chip3 = static_cast(sycl_device.allocate(chip3TensorBuffSize)); TensorMap> gpu_chip3(gpu_data_chip3, chip3TensorRange); gpu_chip3.device(sycl_device)=gpu_tensor.template chip<2l>(2l); sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l)); } } } } array chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; Tensor chip4(chip4TensorRange); const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType); DataType* gpu_data_chip4 = static_cast(sycl_device.allocate(chip4TensorBuffSize)); TensorMap> gpu_chip4(gpu_data_chip4, chip4TensorRange); gpu_chip4.device(sycl_device)=gpu_tensor.template chip<3l>(5l); sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim3; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l)); } } } } array chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; Tensor chip5(chip5TensorRange); const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType); DataType* gpu_data_chip5 = static_cast(sycl_device.allocate(chip5TensorBuffSize)); TensorMap> gpu_chip5(gpu_data_chip5, chip5TensorRange); gpu_chip5.device(sycl_device)=gpu_tensor.template chip<4l>(7l); sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim3; ++k) { for (IndexType l = 0; l < sizeDim4; ++l) { VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l)); } } } } sycl_device.deallocate(gpu_data_tensor); sycl_device.deallocate(gpu_data_chip1); sycl_device.deallocate(gpu_data_chip2); sycl_device.deallocate(gpu_data_chip3); sycl_device.deallocate(gpu_data_chip4); sycl_device.deallocate(gpu_data_chip5); } template static void test_dynamic_chip_sycl(const Eigen::SyclDevice& sycl_device) { IndexType sizeDim1 = 2; IndexType sizeDim2 = 3; IndexType sizeDim3 = 5; IndexType sizeDim4 = 7; IndexType sizeDim5 = 11; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; array chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; Tensor tensor(tensorRange); Tensor chip1(chip1TensorRange); tensor.setRandom(); const size_t tensorBuffSize =tensor.size()*sizeof(DataType); const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); DataType* gpu_data_tensor = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_chip1 = static_cast(sycl_device.allocate(chip1TensorBuffSize)); TensorMap> gpu_tensor(gpu_data_tensor, tensorRange); TensorMap> gpu_chip1(gpu_data_chip1, chip1TensorRange); sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); gpu_chip1.device(sycl_device)=gpu_tensor.chip(1l,0l); sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2); VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3); VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim2; ++i) { for (IndexType j = 0; j < sizeDim3; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l)); } } } } array chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; Tensor chip2(chip2TensorRange); const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType); DataType* gpu_data_chip2 = static_cast(sycl_device.allocate(chip2TensorBuffSize)); TensorMap> gpu_chip2(gpu_data_chip2, chip2TensorRange); gpu_chip2.device(sycl_device)=gpu_tensor.chip(1l,1l); sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3); VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim3; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l)); } } } } array chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; Tensor chip3(chip3TensorRange); const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType); DataType* gpu_data_chip3 = static_cast(sycl_device.allocate(chip3TensorBuffSize)); TensorMap> gpu_chip3(gpu_data_chip3, chip3TensorRange); gpu_chip3.device(sycl_device)=gpu_tensor.chip(2l,2l); sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize); VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4); VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim4; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l)); } } } } array chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; Tensor chip4(chip4TensorRange); const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType); DataType* gpu_data_chip4 = static_cast(sycl_device.allocate(chip4TensorBuffSize)); TensorMap> gpu_chip4(gpu_data_chip4, chip4TensorRange); gpu_chip4.device(sycl_device)=gpu_tensor.chip(5l,3l); sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize); VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3); VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim3; ++k) { for (IndexType l = 0; l < sizeDim5; ++l) { VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l)); } } } } array chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; Tensor chip5(chip5TensorRange); const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType); DataType* gpu_data_chip5 = static_cast(sycl_device.allocate(chip5TensorBuffSize)); TensorMap> gpu_chip5(gpu_data_chip5, chip5TensorRange); gpu_chip5.device(sycl_device)=gpu_tensor.chip(7l,4l); sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize); VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1); VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2); VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3); VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4); for (IndexType i = 0; i < sizeDim1; ++i) { for (IndexType j = 0; j < sizeDim2; ++j) { for (IndexType k = 0; k < sizeDim3; ++k) { for (IndexType l = 0; l < sizeDim4; ++l) { VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l)); } } } } sycl_device.deallocate(gpu_data_tensor); sycl_device.deallocate(gpu_data_chip1); sycl_device.deallocate(gpu_data_chip2); sycl_device.deallocate(gpu_data_chip3); sycl_device.deallocate(gpu_data_chip4); sycl_device.deallocate(gpu_data_chip5); } template static void test_chip_in_expr(const Eigen::SyclDevice& sycl_device) { IndexType sizeDim1 = 2; IndexType sizeDim2 = 3; IndexType sizeDim3 = 5; IndexType sizeDim4 = 7; IndexType sizeDim5 = 11; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; array chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; Tensor tensor(tensorRange); Tensor chip1(chip1TensorRange); Tensor tensor1(chip1TensorRange); tensor.setRandom(); tensor1.setRandom(); const size_t tensorBuffSize =tensor.size()*sizeof(DataType); const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType); DataType* gpu_data_tensor = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_chip1 = static_cast(sycl_device.allocate(chip1TensorBuffSize)); DataType* gpu_data_tensor1 = static_cast(sycl_device.allocate(chip1TensorBuffSize)); TensorMap> gpu_tensor(gpu_data_tensor, tensorRange); TensorMap> gpu_chip1(gpu_data_chip1, chip1TensorRange); TensorMap> gpu_tensor1(gpu_data_tensor1, chip1TensorRange); sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); sycl_device.memcpyHostToDevice(gpu_data_tensor1, tensor1.data(), chip1TensorBuffSize); gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(0l) + gpu_tensor1; sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize); for (int i = 0; i < sizeDim2; ++i) { for (int j = 0; j < sizeDim3; ++j) { for (int k = 0; k < sizeDim4; ++k) { for (int l = 0; l < sizeDim5; ++l) { float expected = tensor(0l,i,j,k,l) + tensor1(i,j,k,l); VERIFY_IS_EQUAL(chip1(i,j,k,l), expected); } } } } array chip2TensorRange = {{sizeDim2, sizeDim4, sizeDim5}}; Tensor tensor2(chip2TensorRange); Tensor chip2(chip2TensorRange); tensor2.setRandom(); const size_t chip2TensorBuffSize =tensor2.size()*sizeof(DataType); DataType* gpu_data_tensor2 = static_cast(sycl_device.allocate(chip2TensorBuffSize)); DataType* gpu_data_chip2 = static_cast(sycl_device.allocate(chip2TensorBuffSize)); TensorMap> gpu_tensor2(gpu_data_tensor2, chip2TensorRange); TensorMap> gpu_chip2(gpu_data_chip2, chip2TensorRange); sycl_device.memcpyHostToDevice(gpu_data_tensor2, tensor2.data(), chip2TensorBuffSize); gpu_chip2.device(sycl_device)=gpu_tensor.template chip<0l>(0l).template chip<1l>(2l) + gpu_tensor2; sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize); for (int i = 0; i < sizeDim2; ++i) { for (int j = 0; j < sizeDim4; ++j) { for (int k = 0; k < sizeDim5; ++k) { float expected = tensor(0l,i,2l,j,k) + tensor2(i,j,k); VERIFY_IS_EQUAL(chip2(i,j,k), expected); } } } sycl_device.deallocate(gpu_data_tensor); sycl_device.deallocate(gpu_data_tensor1); sycl_device.deallocate(gpu_data_chip1); sycl_device.deallocate(gpu_data_tensor2); sycl_device.deallocate(gpu_data_chip2); } template static void test_chip_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device) { IndexType sizeDim1 = 2; IndexType sizeDim2 = 3; IndexType sizeDim3 = 5; IndexType sizeDim4 = 7; IndexType sizeDim5 = 11; array tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; array input2TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; Tensor tensor(tensorRange); Tensor input1(tensorRange); Tensor input2(input2TensorRange); input1.setRandom(); input2.setRandom(); const size_t tensorBuffSize =tensor.size()*sizeof(DataType); const size_t input2TensorBuffSize =input2.size()*sizeof(DataType); std::cout << tensorBuffSize << " , "<< input2TensorBuffSize << std::endl; DataType* gpu_data_tensor = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_input1 = static_cast(sycl_device.allocate(tensorBuffSize)); DataType* gpu_data_input2 = static_cast(sycl_device.allocate(input2TensorBuffSize)); TensorMap> gpu_tensor(gpu_data_tensor, tensorRange); TensorMap> gpu_input1(gpu_data_input1, tensorRange); TensorMap> gpu_input2(gpu_data_input2, input2TensorRange); sycl_device.memcpyHostToDevice(gpu_data_input1, input1.data(), tensorBuffSize); gpu_tensor.device(sycl_device)=gpu_input1; sycl_device.memcpyHostToDevice(gpu_data_input2, input2.data(), input2TensorBuffSize); gpu_tensor.template chip<0l>(1l).device(sycl_device)=gpu_input2; sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { for (int l = 0; l < sizeDim4; ++l) { for (int m = 0; m < sizeDim5; ++m) { if (i != 1) { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m)); } else { VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input2(j,k,l,m)); } } } } } } gpu_tensor.device(sycl_device)=gpu_input1; array input3TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}}; Tensor input3(input3TensorRange); input3.setRandom(); const size_t input3TensorBuffSize =input3.size()*sizeof(DataType); DataType* gpu_data_input3 = static_cast(sycl_device.allocate(input3TensorBuffSize)); TensorMap> gpu_input3(gpu_data_input3, input3TensorRange); sycl_device.memcpyHostToDevice(gpu_data_input3, input3.data(), input3TensorBuffSize); gpu_tensor.template chip<1l>(1l).device(sycl_device)=gpu_input3; sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k input4TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}}; Tensor input4(input4TensorRange); input4.setRandom(); const size_t input4TensorBuffSize =input4.size()*sizeof(DataType); DataType* gpu_data_input4 = static_cast(sycl_device.allocate(input4TensorBuffSize)); TensorMap> gpu_input4(gpu_data_input4, input4TensorRange); sycl_device.memcpyHostToDevice(gpu_data_input4, input4.data(), input4TensorBuffSize); gpu_tensor.template chip<2l>(3l).device(sycl_device)=gpu_input4; sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k input5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}}; Tensor input5(input5TensorRange); input5.setRandom(); const size_t input5TensorBuffSize =input5.size()*sizeof(DataType); DataType* gpu_data_input5 = static_cast(sycl_device.allocate(input5TensorBuffSize)); TensorMap> gpu_input5(gpu_data_input5, input5TensorRange); sycl_device.memcpyHostToDevice(gpu_data_input5, input5.data(), input5TensorBuffSize); gpu_tensor.template chip<3l>(4l).device(sycl_device)=gpu_input5; sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k input6TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; Tensor input6(input6TensorRange); input6.setRandom(); const size_t input6TensorBuffSize =input6.size()*sizeof(DataType); DataType* gpu_data_input6 = static_cast(sycl_device.allocate(input6TensorBuffSize)); TensorMap> gpu_input6(gpu_data_input6, input6TensorRange); sycl_device.memcpyHostToDevice(gpu_data_input6, input6.data(), input6TensorBuffSize); gpu_tensor.template chip<4l>(5l).device(sycl_device)=gpu_input6; sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k input7(tensorRange); input7.setRandom(); DataType* gpu_data_input7 = static_cast(sycl_device.allocate(tensorBuffSize)); TensorMap> gpu_input7(gpu_data_input7, tensorRange); sycl_device.memcpyHostToDevice(gpu_data_input7, input7.data(), tensorBuffSize); gpu_tensor.chip(0l,0l).device(sycl_device)=gpu_input7.chip(0l,0l); sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k void sycl_chipping_test_per_device(dev_Selector s){ QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); /* test_static_chip_sycl(sycl_device); test_static_chip_sycl(sycl_device); test_dynamic_chip_sycl(sycl_device); test_dynamic_chip_sycl(sycl_device); test_chip_in_expr(sycl_device); test_chip_in_expr(sycl_device);*/ test_chip_as_lvalue_sycl(sycl_device); // test_chip_as_lvalue_sycl(sycl_device); } EIGEN_DECLARE_TEST(cxx11_tensor_chipping_sycl) { for (const auto& device :Eigen::get_sycl_supported_devices()) { CALL_SUBTEST(sycl_chipping_test_per_device(device)); } }