// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018 Andy Davis // Copyright (C) 2018 Eugene Zhulenev // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include #include using Eigen::Tensor; using Eigen::Index; using Eigen::RowMajor; using Eigen::ColMajor; using Eigen::internal::TensorBlockShapeType; static TensorOpCost zeroCost() { return {0, 0, 0}; } template static const T& choose(int layout, const T& col, const T& row) { return layout == ColMajor ? col : row; } static TensorBlockShapeType RandomShape() { return internal::random() ? TensorBlockShapeType::kUniformAllDims : TensorBlockShapeType::kSkewedInnerDims; } template static size_t RandomTargetSize(const DSizes& dims) { return internal::random(1, dims.TotalSize()); } template static DSizes RandomDims() { array dims; for (int i = 0; i < NumDims; ++i) { dims[i] = internal::random(1, 20); } return DSizes(dims); } template static T* GenerateRandomData(const Index& size) { T* data = new T[size]; for (int i = 0; i < size; ++i) { data[i] = internal::random(); } return data; } template static void Debug(DSizes dims) { for (int i = 0; i < NumDims; ++i) { std::cout << dims[i] << "; "; } std::cout << std::endl; } template static void test_block_mapper_sanity() { typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper; DSizes tensor_dims(100, 100); // Test uniform blocks. TensorBlockMapper uniform_block_mapper( tensor_dims, {TensorBlockShapeType::kUniformAllDims, 100, zeroCost()}); VERIFY_IS_EQUAL(uniform_block_mapper.blockCount(), 100); VERIFY_IS_EQUAL(uniform_block_mapper.blockTotalSize(), 100); // 10x10 blocks auto uniform_b0 = uniform_block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(uniform_b0.dimensions().at(0), 10); VERIFY_IS_EQUAL(uniform_b0.dimensions().at(1), 10); // Test skewed to inner dims blocks. TensorBlockMapper skewed_block_mapper( tensor_dims, {TensorBlockShapeType::kSkewedInnerDims, 100, zeroCost()}); VERIFY_IS_EQUAL(skewed_block_mapper.blockCount(), 100); VERIFY_IS_EQUAL(skewed_block_mapper.blockTotalSize(), 100); // 1x100 (100x1) rows/cols depending on a tensor layout. auto skewed_b0 = skewed_block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(skewed_b0.dimensions().at(0), choose(Layout, 100, 1)); VERIFY_IS_EQUAL(skewed_b0.dimensions().at(1), choose(Layout, 1, 100)); } // Given a TensorBlock "visit" every element accessible though it, and a keep an // index in the visited set. Verify that every coeff accessed only once. template static void UpdateCoeffSet( const DSizes& tensor_strides, const internal::TensorBlockDescriptor& block, Index first_coeff_index, int dim_index, std::set* visited_coeffs) { const DSizes& block_sizes = block.dimensions(); for (int i = 0; i < block_sizes[dim_index]; ++i) { if (tensor_strides[dim_index] == 1) { typedef std::pair::iterator, bool> ReturnType; ReturnType inserted = visited_coeffs->insert(first_coeff_index + i); VERIFY_IS_EQUAL(inserted.second, true); } else { int next_dim_index = dim_index + choose(Layout, -1, 1); UpdateCoeffSet(tensor_strides, block, first_coeff_index, next_dim_index, visited_coeffs); first_coeff_index += tensor_strides[dim_index]; } } } template static void test_block_mapper_maps_every_element() { typedef internal::TensorBlockMapper TensorBlockMapper; DSizes dims = RandomDims(); DSizes strides = internal::strides(dims); // Keep track of elements indices available via block access. std::set coeff_set; // Try different combinations of block types and sizes. TensorBlockMapper block_mapper( dims, {RandomShape(), RandomTargetSize(dims), zeroCost()}); for (int i = 0; i < block_mapper.blockCount(); ++i) { auto block = block_mapper.blockDescriptor(i); UpdateCoeffSet(strides, block, block.offset(), choose(Layout, NumDims - 1, 0), &coeff_set); } // Verify that every coefficient in the original Tensor is accessible through // TensorBlock only once. Index total_coeffs = dims.TotalSize(); VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs); VERIFY_IS_EQUAL(*coeff_set.begin(), 0); VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1); } template static Index GetInputIndex(Index output_index, const array& output_to_input_dim_map, const array& input_strides, const array& output_strides) { int input_index = 0; if (Layout == ColMajor) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = output_index / output_strides[i]; input_index += idx * input_strides[output_to_input_dim_map[i]]; output_index -= idx * output_strides[i]; } return input_index + output_index * input_strides[output_to_input_dim_map[0]]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = output_index / output_strides[i]; input_index += idx * input_strides[output_to_input_dim_map[i]]; output_index -= idx * output_strides[i]; } return input_index + output_index * input_strides[output_to_input_dim_map[NumDims - 1]]; } } template static array ComputeStrides( const array& sizes) { array strides; if (Layout == ColMajor) { strides[0] = 1; for (int i = 1; i < NumDims; ++i) { strides[i] = strides[i - 1] * sizes[i - 1]; } } else { strides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { strides[i] = strides[i + 1] * sizes[i + 1]; } } return strides; } template class EqualityChecker { const Scalar* input_data; const DSizes &input_dims, &input_strides, &output_dims, &output_strides; void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const { if(depth==Dim) { VERIFY_IS_EQUAL(*input, *output); return; } for(int i=0; i &input_dims_, const DSizes &input_strides_, const DSizes &output_dims_, const DSizes &output_strides_) : input_data(input_data_) , input_dims(input_dims_), input_strides(input_strides_) , output_dims(output_dims_), output_strides(output_strides_) {} void operator()(const Scalar* output_data) const { check_recursive(input_data, output_data); } }; template static void test_uniform_block_shape() { typedef internal::TensorBlockDescriptor<5> TensorBlock; typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper; { // Test shape 'UniformAllDims' with uniform 'max_coeff count'. DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); for (int i = 0; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // partially into first inner-most dimension. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 6; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(6, block.dimensions()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(5, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // fully into first inner-most dimension. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 5 * 5 * 5; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(11, block.dimensions()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(5, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 5 * 5 * 5 * 5 * 7; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(5, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills // fully into first few inner-most dimensions. if (Layout == ColMajor) { DSizes dims(7, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 6 * 7 * 5; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[0]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(6, block.dimensions()[2]); VERIFY_IS_EQUAL(7, block.dimensions()[3]); VERIFY_IS_EQUAL(5, block.dimensions()[4]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(7, 5, 6, 9, 7); const Index max_coeff_count = 5 * 5 * 5 * 6 * 7; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY_IS_EQUAL(6, block.dimensions()[3]); VERIFY_IS_EQUAL(5, block.dimensions()[2]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(5, block.dimensions()[0]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'UniformAllDims' with full allocation to all dims. if (Layout == ColMajor) { DSizes dims(7, 5, 6, 17, 7); const Index max_coeff_count = 7 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[0]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(6, block.dimensions()[2]); VERIFY_IS_EQUAL(17, block.dimensions()[3]); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(7, 5, 6, 9, 7); const Index max_coeff_count = 7 * 5 * 6 * 9 * 7; TensorBlockMapper block_mapper(dims, {TensorBlockShapeType::kUniformAllDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY_IS_EQUAL(9, block.dimensions()[3]); VERIFY_IS_EQUAL(6, block.dimensions()[2]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(7, block.dimensions()[0]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } } template static void test_skewed_inner_dim_block_shape() { typedef internal::TensorBlockDescriptor<5> TensorBlock; typedef internal::TensorBlockMapper<5, Layout> TensorBlockMapper; // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 10 * 1 * 1 * 1 * 1; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(10, block.dimensions()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 1 * 6; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(6, block.dimensions()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 1 * 1 * 1 * 1; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(11, block.dimensions()[0]); for (int i = 1; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 1 * 7; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); for (int i = 3; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, // and partial allocation to second inner-dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 3 * 1 * 1 * 1; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(11, block.dimensions()[0]); VERIFY_IS_EQUAL(3, block.dimensions()[1]); for (int i = 2; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 1 * 15 * 7; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY_IS_EQUAL(15, block.dimensions()[3]); for (int i = 2; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to inner-most dim, // and partial allocation to third inner-dim. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 5 * 1 * 1; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(11, block.dimensions()[0]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(5, block.dimensions()[2]); for (int i = 3; i < 5; ++i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 1 * 1 * 5 * 17 * 7; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY_IS_EQUAL(17, block.dimensions()[3]); VERIFY_IS_EQUAL(5, block.dimensions()[2]); for (int i = 1; i >= 0; --i) { VERIFY_IS_EQUAL(1, block.dimensions()[i]); } VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } // Test shape 'SkewedInnerDims' with full allocation to all dims. if (Layout == ColMajor) { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(11, block.dimensions()[0]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(6, block.dimensions()[2]); VERIFY_IS_EQUAL(17, block.dimensions()[3]); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } else { DSizes dims(11, 5, 6, 17, 7); const Index max_coeff_count = 11 * 5 * 6 * 17 * 7; TensorBlockMapper block_mapper( dims, {TensorBlockShapeType::kSkewedInnerDims, max_coeff_count, zeroCost()}); TensorBlock block = block_mapper.blockDescriptor(0); VERIFY_IS_EQUAL(7, block.dimensions()[4]); VERIFY_IS_EQUAL(17, block.dimensions()[3]); VERIFY_IS_EQUAL(6, block.dimensions()[2]); VERIFY_IS_EQUAL(5, block.dimensions()[1]); VERIFY_IS_EQUAL(11, block.dimensions()[0]); VERIFY(block.dimensions().TotalSize() <= max_coeff_count); } } template static void test_empty_dims(const internal::TensorBlockShapeType block_shape) { // Test blocking of tensors with zero dimensions: // - we must not crash on asserts and divisions by zero // - we must not return block with zero dimensions // (recipe for overflows/underflows, divisions by zero and NaNs later) // - total block count must be zero { typedef internal::TensorBlockMapper<1, Layout> TensorBlockMapper; DSizes dims(0); for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { TensorBlockMapper block_mapper( dims, {block_shape, max_coeff_count, zeroCost()}); VERIFY_IS_EQUAL(block_mapper.blockCount(), 0); VERIFY(block_mapper.blockTotalSize() >= 1); } } { typedef internal::TensorBlockMapper<2, Layout> TensorBlockMapper; for (int dim1 = 0; dim1 < 3; ++dim1) { for (int dim2 = 0; dim2 < 3; ++dim2) { DSizes dims(dim1, dim2); for (size_t max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) { TensorBlockMapper block_mapper( dims, {block_shape, max_coeff_count, zeroCost()}); if (dim1 * dim2 == 0) { VERIFY_IS_EQUAL(block_mapper.blockCount(), 0); } VERIFY(block_mapper.blockTotalSize() >= 1); } } } } } #define TEST_LAYOUTS(NAME) \ CALL_SUBTEST(NAME()); \ CALL_SUBTEST(NAME()) #define TEST_LAYOUTS_AND_DIMS(TYPE, NAME) \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())); \ CALL_SUBTEST((NAME())) #define TEST_LAYOUTS_WITH_ARG(NAME, ARG) \ CALL_SUBTEST(NAME(ARG)); \ CALL_SUBTEST(NAME(ARG)) EIGEN_DECLARE_TEST(cxx11_tensor_block_access) { TEST_LAYOUTS(test_block_mapper_sanity); TEST_LAYOUTS_AND_DIMS(float, test_block_mapper_maps_every_element); TEST_LAYOUTS(test_uniform_block_shape); TEST_LAYOUTS(test_skewed_inner_dim_block_shape); TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims); TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims); } #undef TEST_LAYOUTS #undef TEST_LAYOUTS_WITH_ARG