// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2009 Mark Borgerding mark a borgerding net // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "main.h" #include <fftw3.h> #include <unsupported/Eigen/FFT> using namespace std; float norm(float x) {return x*x;} double norm(double x) {return x*x;} long double norm(long double x) {return x*x;} template < typename T> complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } complex<long double> promote(float x) { return complex<long double>( x); } complex<long double> promote(double x) { return complex<long double>( x); } complex<long double> promote(long double x) { return complex<long double>( x); } template <typename T1,typename T2> long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf) { long double totalpower=0; long double difpower=0; cerr <<"idx\ttruth\t\tvalue\t|dif|=\n"; for (size_t k0=0;k0<fftbuf.size();++k0) { complex<long double> acc = 0; long double phinc = -2.*k0* M_PIl / timebuf.size(); for (size_t k1=0;k1<timebuf.size();++k1) { acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); } totalpower += norm(acc); complex<long double> x = promote(fftbuf[k0]); complex<long double> dif = acc - x; difpower += norm(dif); cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl; } cerr << "rmse:" << sqrt(difpower/totalpower) << endl; return sqrt(difpower/totalpower); } template <typename T1,typename T2> long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2) { long double totalpower=0; long double difpower=0; size_t n = min( buf1.size(),buf2.size() ); for (size_t k=0;k<n;++k) { totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.; difpower += norm(buf1[k] - buf2[k]); } return sqrt(difpower/totalpower); } template <class T> void test_scalar(int nfft) { typedef typename Eigen::FFT<T>::Complex Complex; typedef typename Eigen::FFT<T>::Scalar Scalar; FFT<T> fft; vector<Scalar> inbuf(nfft); vector<Complex> outbuf; for (int k=0;k<nfft;++k) inbuf[k]= (T)(rand()/(double)RAND_MAX - .5); fft.fwd( outbuf,inbuf); VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check vector<Scalar> buf3; fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check } template <class T> void test_complex(int nfft) { typedef typename Eigen::FFT<T>::Complex Complex; FFT<T> fft; vector<Complex> inbuf(nfft); vector<Complex> outbuf; vector<Complex> buf3; for (int k=0;k<nfft;++k) inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); fft.fwd( outbuf , inbuf); VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check fft.inv( buf3 , outbuf); VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check } void test_FFTW() { CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) ); CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) ); CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) ); CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) ); CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) ); CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) ); CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) ); CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) ); CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) ); CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); }