// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" // research report written by Ming Gu and Stanley C.Eisenstat // The code variable names correspond to the names they used in their // report // // Copyright (C) 2013 Gauthier Brun // Copyright (C) 2013 Nicolas Carre // Copyright (C) 2013 Jean Ceccato // Copyright (C) 2013 Pierre Zoppitelli // Copyright (C) 2013 Jitse Niesen // // Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BDCSVD_H #define EIGEN_BDCSVD_H #define EPSILON 0.0000000000000001 #define ALGOSWAP 16 namespace Eigen { /** \ingroup SVD_Module * * * \class BDCSVD * * \brief class Bidiagonal Divide and Conquer SVD * * \param MatrixType the type of the matrix of which we are computing the SVD decomposition * We plan to have a very similar interface to JacobiSVD on this class. * It should be used to speed up the calcul of SVD for big matrices. */ template class BDCSVD : public SVDBase<_MatrixType> { typedef SVDBase<_MatrixType> Base; public: using Base::rows; using Base::cols; typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename MatrixType::Index Index; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef Matrix MatrixUType; typedef Matrix MatrixVType; typedef typename internal::plain_diag_type::type SingularValuesType; typedef typename internal::plain_row_type::type RowType; typedef typename internal::plain_col_type::type ColType; typedef Matrix MatrixX; typedef Matrix MatrixXr; typedef Matrix VectorType; typedef Array ArrayXr; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via BDCSVD::compute(const MatrixType&). */ BDCSVD() : SVDBase<_MatrixType>::SVDBase(), algoswap(ALGOSWAP), m_numIters(0) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem size. * \sa BDCSVD() */ BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) : SVDBase<_MatrixType>::SVDBase(), algoswap(ALGOSWAP), m_numIters(0) { allocate(rows, cols, computationOptions); } /** \brief Constructor performing the decomposition of given matrix. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non - default) FullPivHouseholderQR preconditioner. */ BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) : SVDBase<_MatrixType>::SVDBase(), algoswap(ALGOSWAP), m_numIters(0) { compute(matrix, computationOptions); } ~BDCSVD() { } /** \brief Method performing the decomposition of given matrix using custom options. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non - default) FullPivHouseholderQR preconditioner. */ SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions); /** \brief Method performing the decomposition of given matrix using current options. * * \param matrix the matrix to decompose * * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). */ SVDBase& compute(const MatrixType& matrix) { return compute(matrix, this->m_computationOptions); } void setSwitchSize(int s) { eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); algoswap = s; } /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. * * \param b the right - hand - side of the equation to solve. * * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. * * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving. * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. */ template inline const internal::solve_retval solve(const MatrixBase& b) const { eigen_assert(this->m_isInitialized && "BDCSVD is not initialized."); eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() && "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); return internal::solve_retval(*this, b.derived()); } const MatrixUType& matrixU() const { eigen_assert(this->m_isInitialized && "SVD is not initialized."); if (isTranspose){ eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?"); return this->m_matrixV; } else { eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); return this->m_matrixU; } } const MatrixVType& matrixV() const { eigen_assert(this->m_isInitialized && "SVD is not initialized."); if (isTranspose){ eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?"); return this->m_matrixU; } else { eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); return this->m_matrixV; } } private: void allocate(Index rows, Index cols, unsigned int computationOptions); void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); void computeSingVals(const ArrayXr& col0, const ArrayXr& diag, VectorType& singVals, ArrayXr& shifts, ArrayXr& mus); void perturbCol0(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat); void computeSingVecs(const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V); void deflation43(Index firstCol, Index shift, Index i, Index size); void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); void copyUV(const typename internal::UpperBidiagonalization::HouseholderUSequenceType& householderU, const typename internal::UpperBidiagonalization::HouseholderVSequenceType& householderV); protected: MatrixXr m_naiveU, m_naiveV; MatrixXr m_computed; Index nRec; int algoswap; bool isTranspose, compU, compV; public: int m_numIters; }; //end class BDCSVD // Methode to allocate ans initialize matrix and attributs template void BDCSVD::allocate(Index rows, Index cols, unsigned int computationOptions) { isTranspose = (cols > rows); if (SVDBase::allocate(rows, cols, computationOptions)) return; m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize ); if (isTranspose){ compU = this->computeU(); compV = this->computeV(); } else { compV = this->computeU(); compU = this->computeV(); } if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 ); else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 ); if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize); //should be changed for a cleaner implementation if (isTranspose){ bool aux; if (this->computeU()||this->computeV()){ aux = this->m_computeFullU; this->m_computeFullU = this->m_computeFullV; this->m_computeFullV = aux; aux = this->m_computeThinU; this->m_computeThinU = this->m_computeThinV; this->m_computeThinV = aux; } } }// end allocate // Methode which compute the BDCSVD for the int template<> SVDBase >& BDCSVD >::compute(const MatrixType& matrix, unsigned int computationOptions) { allocate(matrix.rows(), matrix.cols(), computationOptions); this->m_nonzeroSingularValues = 0; m_computed = Matrix::Zero(rows(), cols()); for (int i=0; im_diagSize; i++) { this->m_singularValues.coeffRef(i) = 0; } if (this->m_computeFullU) this->m_matrixU = Matrix::Zero(rows(), rows()); if (this->m_computeFullV) this->m_matrixV = Matrix::Zero(cols(), cols()); this->m_isInitialized = true; return *this; } // Methode which compute the BDCSVD template SVDBase& BDCSVD::compute(const MatrixType& matrix, unsigned int computationOptions) { allocate(matrix.rows(), matrix.cols(), computationOptions); using std::abs; //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ; MatrixType copy; if (isTranspose) copy = matrix.adjoint(); else copy = matrix; internal::UpperBidiagonalization bid(copy); //**** step 2 Divide m_computed.topRows(this->m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); m_computed.template bottomRows<1>().setZero(); divide(0, this->m_diagSize - 1, 0, 0, 0); //**** step 3 copy for (int i=0; im_diagSize; i++) { RealScalar a = abs(m_computed.coeff(i, i)); this->m_singularValues.coeffRef(i) = a; if (a == 0){ this->m_nonzeroSingularValues = i; this->m_singularValues.tail(this->m_diagSize - i - 1).setZero(); break; } else if (i == this->m_diagSize - 1) { this->m_nonzeroSingularValues = i + 1; break; } } copyUV(bid.householderU(), bid.householderV()); this->m_isInitialized = true; return *this; }// end compute template void BDCSVD::copyUV(const typename internal::UpperBidiagonalization::HouseholderUSequenceType& householderU, const typename internal::UpperBidiagonalization::HouseholderVSequenceType& householderV) { // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa if (this->computeU()){ Index Ucols = this->m_computeThinU ? this->m_nonzeroSingularValues : householderU.cols(); this->m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); Index blockCols = this->m_computeThinU ? this->m_nonzeroSingularValues : this->m_diagSize; this->m_matrixU.block(0, 0, this->m_diagSize, blockCols) = m_naiveV.template cast().block(0, 0, this->m_diagSize, blockCols); this->m_matrixU = householderU * this->m_matrixU; } if (this->computeV()){ Index Vcols = this->m_computeThinV ? this->m_nonzeroSingularValues : householderV.cols(); this->m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); Index blockCols = this->m_computeThinV ? this->m_nonzeroSingularValues : this->m_diagSize; this->m_matrixV.block(0, 0, this->m_diagSize, blockCols) = m_naiveU.template cast().block(0, 0, this->m_diagSize, blockCols); this->m_matrixV = householderV * this->m_matrixV; } } // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the // place of the submatrix we are currently working on. //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; // lastCol + 1 - firstCol is the size of the submatrix. //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) //@param firstRowW : Same as firstRowW with the column. //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. template void BDCSVD::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) { // requires nbRows = nbCols + 1; using std::pow; using std::sqrt; using std::abs; const Index n = lastCol - firstCol + 1; const Index k = n/2; RealScalar alphaK; RealScalar betaK; RealScalar r0; RealScalar lambda, phi, c0, s0; MatrixXr l, f; // We use the other algorithm which is more efficient for small // matrices. if (n < algoswap){ JacobiSVD b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (ComputeFullV * compV)) ; if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU(); else { m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0); m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n); } if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV(); m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); for (int i=0; i= firstCol; i--) { m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1); } // we shift q1 at the left with a factor c0 m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0); // last column = q1 * - s0 m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0)); // first column = q2 * s0 m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) << m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0; // q2 *= c0 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; } else { RealScalar q1 = (m_naiveU(0, firstCol + k)); // we shift Q1 to the right for (Index i = firstCol + k - 1; i >= firstCol; i--) { m_naiveU(0, i + 1) = m_naiveU(0, i); } // we shift q1 at the left with a factor c0 m_naiveU(0, firstCol) = (q1 * c0); // last column = q1 * - s0 m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); // first column = q2 * s0 m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; // q2 *= c0 m_naiveU(1, lastCol + 1) *= c0; m_naiveU.row(1).segment(firstCol + 1, k).setZero(); m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); } m_computed(firstCol + shift, firstCol + shift) = r0; m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real(); m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real(); // Second part: try to deflate singular values in combined matrix deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); // Third part: compute SVD of combined matrix MatrixXr UofSVD, VofSVD; VectorType singVals; computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD; else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD; if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD; m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; }// end divide // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except // that if compV is false, then V is not computed. Singular values are sorted in decreasing order. // // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better // handling of round-off errors, be consistent in ordering template void BDCSVD::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) { // TODO Get rid of these copies (?) ArrayXr col0 = m_computed.block(firstCol, firstCol, n, 1); ArrayXr diag = m_computed.block(firstCol, firstCol, n, n).diagonal(); diag(0) = 0; // compute singular values and vectors (in decreasing order) singVals.resize(n); U.resize(n+1, n+1); if (compV) V.resize(n, n); if (col0.hasNaN() || diag.hasNaN()) return; ArrayXr shifts(n), mus(n), zhat(n); computeSingVals(col0, diag, singVals, shifts, mus); perturbCol0(col0, diag, singVals, shifts, mus, zhat); computeSingVecs(zhat, diag, singVals, shifts, mus, U, V); // Reverse order so that singular values in increased order singVals.reverseInPlace(); U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval(); if (compV) V = V.rowwise().reverse().eval(); } template void BDCSVD::computeSingVals(const ArrayXr& col0, const ArrayXr& diag, VectorType& singVals, ArrayXr& shifts, ArrayXr& mus) { using std::abs; using std::swap; Index n = col0.size(); for (Index k = 0; k < n; ++k) { if (col0(k) == 0) { // entry is deflated, so singular value is on diagonal singVals(k) = diag(k); mus(k) = 0; shifts(k) = diag(k); continue; } // otherwise, use secular equation to find singular value RealScalar left = diag(k); RealScalar right = (k != n-1) ? diag(k+1) : (diag(n-1) + col0.matrix().norm()); // first decide whether it's closer to the left end or the right end RealScalar mid = left + (right-left) / 2; RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).sum(); RealScalar shift; if (k == n-1 || fMid > 0) shift = left; else shift = right; // measure everything relative to shift ArrayXr diagShifted = diag - shift; // initial guess RealScalar muPrev, muCur; if (shift == left) { muPrev = (right - left) * 0.1; if (k == n-1) muCur = right - left; else muCur = (right - left) * 0.5; } else { muPrev = -(right - left) * 0.1; muCur = -(right - left) * 0.5; } RealScalar fPrev = 1 + (col0.square() / ((diagShifted - muPrev) * (diag + shift + muPrev))).sum(); RealScalar fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum(); if (abs(fPrev) < abs(fCur)) { swap(fPrev, fCur); swap(muPrev, muCur); } // rational interpolation: fit a function of the form a / mu + b through the two previous // iterates and use its zero to compute the next iterate bool useBisection = false; while (abs(muCur - muPrev) > 8 * NumTraits::epsilon() * (std::max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection) { ++m_numIters; RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev); RealScalar b = fCur - a / muCur; muPrev = muCur; fPrev = fCur; muCur = -a / b; fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum(); if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true; if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true; } // fall back on bisection method if rational interpolation did not work if (useBisection) { RealScalar leftShifted, rightShifted; if (shift == left) { leftShifted = 1e-30; if (k == 0) rightShifted = right - left; else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe } else { leftShifted = -(right - left) * 0.6; rightShifted = -1e-30; } RealScalar fLeft = 1 + (col0.square() / ((diagShifted - leftShifted) * (diag + shift + leftShifted))).sum(); RealScalar fRight = 1 + (col0.square() / ((diagShifted - rightShifted) * (diag + shift + rightShifted))).sum(); assert(fLeft * fRight < 0); while (rightShifted - leftShifted > 2 * NumTraits::epsilon() * (std::max)(abs(leftShifted), abs(rightShifted))) { RealScalar midShifted = (leftShifted + rightShifted) / 2; RealScalar fMid = 1 + (col0.square() / ((diagShifted - midShifted) * (diag + shift + midShifted))).sum(); if (fLeft * fMid < 0) { rightShifted = midShifted; fRight = fMid; } else { leftShifted = midShifted; fLeft = fMid; } } muCur = (leftShifted + rightShifted) / 2; } singVals[k] = shift + muCur; shifts[k] = shift; mus[k] = muCur; // perturb singular value slightly if it equals diagonal entry to avoid division by zero later // (deflation is supposed to avoid this from happening) if (singVals[k] == left) singVals[k] *= 1 + NumTraits::epsilon(); if (singVals[k] == right) singVals[k] *= 1 - NumTraits::epsilon(); } } // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) template void BDCSVD::perturbCol0 (const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat) { Index n = col0.size(); for (Index k = 0; k < n; ++k) { if (col0(k) == 0) zhat(k) = 0; else { // see equation (3.6) using std::sqrt; RealScalar tmp = sqrt( (singVals(n-1) + diag(k)) * (mus(n-1) + (shifts(n-1) - diag(k))) * ( ((singVals.head(k).array() + diag(k)) * (mus.head(k) + (shifts.head(k) - diag(k)))) / ((diag.head(k).array() + diag(k)) * (diag.head(k).array() - diag(k))) ).prod() * ( ((singVals.segment(k, n-k-1).array() + diag(k)) * (mus.segment(k, n-k-1) + (shifts.segment(k, n-k-1) - diag(k)))) / ((diag.tail(n-k-1) + diag(k)) * (diag.tail(n-k-1) - diag(k))) ).prod() ); if (col0(k) > 0) zhat(k) = tmp; else zhat(k) = -tmp; } } } // compute singular vectors template void BDCSVD::computeSingVecs (const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V) { Index n = zhat.size(); for (Index k = 0; k < n; ++k) { if (zhat(k) == 0) { U.col(k) = VectorType::Unit(n+1, k); if (compV) V.col(k) = VectorType::Unit(n, k); } else { U.col(k).head(n) = zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k])); U(n,k) = 0; U.col(k).normalize(); if (compV) { V.col(k).tail(n-1) = (diag * zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]))).tail(n-1); V(0,k) = -1; V.col(k).normalize(); } } } U.col(n) = VectorType::Unit(n+1, n); } // page 12_13 // i >= 1, di almost null and zi non null. // We use a rotation to zero out zi applied to the left of M template void BDCSVD::deflation43(Index firstCol, Index shift, Index i, Index size){ using std::abs; using std::sqrt; using std::pow; RealScalar c = m_computed(firstCol + shift, firstCol + shift); RealScalar s = m_computed(i, firstCol + shift); RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); if (r == 0){ m_computed(i, i)=0; return; } c/=r; s/=r; m_computed(firstCol + shift, firstCol + shift) = r; m_computed(i, firstCol + shift) = 0; m_computed(i, i) = 0; if (compU){ m_naiveU.col(firstCol).segment(firstCol,size) = c * m_naiveU.col(firstCol).segment(firstCol, size) - s * m_naiveU.col(i).segment(firstCol, size) ; m_naiveU.col(i).segment(firstCol, size) = (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) + (s/c) * m_naiveU.col(firstCol).segment(firstCol,size); } }// end deflation 43 // page 13 // i,j >= 1, i != j and |di - dj| < epsilon * norm2(M) // We apply two rotations to have zj = 0; template void BDCSVD::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){ using std::abs; using std::sqrt; using std::conj; using std::pow; RealScalar c = m_computed(firstColm, firstColm + j - 1); RealScalar s = m_computed(firstColm, firstColm + i - 1); RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); if (r==0){ m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); return; } c/=r; s/=r; m_computed(firstColm + i, firstColm) = r; m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); m_computed(firstColm + j, firstColm) = 0; if (compU){ m_naiveU.col(firstColu + i).segment(firstColu, size) = c * m_naiveU.col(firstColu + i).segment(firstColu, size) - s * m_naiveU.col(firstColu + j).segment(firstColu, size) ; m_naiveU.col(firstColu + j).segment(firstColu, size) = (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) + (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size); } if (compV){ m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) = c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) + s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ; m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) = (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) - (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1); } }// end deflation 44 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] template void BDCSVD::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){ //condition 4.1 using std::sqrt; const Index length = lastCol + 1 - firstCol; RealScalar norm1 = m_computed.block(firstCol+shift, firstCol+shift, length, 1).squaredNorm(); RealScalar norm2 = m_computed.block(firstCol+shift, firstCol+shift, length, length).diagonal().squaredNorm(); RealScalar EPS = 10 * NumTraits::epsilon() * sqrt(norm1 + norm2); if (m_computed(firstCol + shift, firstCol + shift) < EPS){ m_computed(firstCol + shift, firstCol + shift) = EPS; } //condition 4.2 for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){ if (std::abs(m_computed(i, firstCol + shift)) < EPS){ m_computed(i, firstCol + shift) = 0; } } //condition 4.3 for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){ if (m_computed(i, i) < EPS){ deflation43(firstCol, shift, i, length); } } //condition 4.4 Index i=firstCol + shift + 1, j=firstCol + shift + k + 1; //we stock the final place of each line Index *permutation = new Index[length]; for (Index p =1; p < length; p++) { if (i> firstCol + shift + k){ permutation[p] = j; j++; } else if (j> lastCol + shift) { permutation[p] = i; i++; } else { if (m_computed(i, i) < m_computed(j, j)){ permutation[p] = j; j++; } else { permutation[p] = i; i++; } } } //we do the permutation RealScalar aux; //we stock the current index of each col //and the column of each index Index *realInd = new Index[length]; Index *realCol = new Index[length]; for (int pos = 0; pos< length; pos++){ realCol[pos] = pos + firstCol + shift; realInd[pos] = pos; } const Index Zero = firstCol + shift; VectorType temp; for (int i = 1; i < length - 1; i++){ const Index I = i + Zero; const Index realI = realInd[i]; const Index j = permutation[length - i] - Zero; const Index J = realCol[j]; //diag displace aux = m_computed(I, I); m_computed(I, I) = m_computed(J, J); m_computed(J, J) = aux; //firstrow displace aux = m_computed(I, Zero); m_computed(I, Zero) = m_computed(J, Zero); m_computed(J, Zero) = aux; // change columns if (compU) { temp = m_naiveU.col(I - shift).segment(firstCol, length + 1); m_naiveU.col(I - shift).segment(firstCol, length + 1) << m_naiveU.col(J - shift).segment(firstCol, length + 1); m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp; } else { temp = m_naiveU.col(I - shift).segment(0, 2); m_naiveU.col(I - shift).segment(0, 2) << m_naiveU.col(J - shift).segment(0, 2); m_naiveU.col(J - shift).segment(0, 2) << temp; } if (compV) { const Index CWI = I + firstColW - Zero; const Index CWJ = J + firstColW - Zero; temp = m_naiveV.col(CWI).segment(firstRowW, length); m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length); m_naiveV.col(CWJ).segment(firstRowW, length) << temp; } //update real pos realCol[realI] = J; realCol[j] = I; realInd[J - Zero] = realI; realInd[I - Zero] = j; } for (Index i = firstCol + shift + 1; i struct solve_retval, Rhs> : solve_retval_base, Rhs> { typedef BDCSVD<_MatrixType> BDCSVDType; EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs) template void evalTo(Dest& dst) const { eigen_assert(rhs().rows() == dec().rows()); // A = U S V^* // So A^{ - 1} = V S^{ - 1} U^* Index diagSize = (std::min)(dec().rows(), dec().cols()); typename BDCSVDType::SingularValuesType invertedSingVals(diagSize); Index nonzeroSingVals = dec().nonzeroSingularValues(); invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); dst = dec().matrixV().leftCols(diagSize) * invertedSingVals.asDiagonal() * dec().matrixU().leftCols(diagSize).adjoint() * rhs(); return; } }; } //end namespace internal /** \svd_module * * \return the singular value decomposition of \c *this computed by * BDC Algorithm * * \sa class BDCSVD */ /* template BDCSVD::PlainObject> MatrixBase::bdcSvd(unsigned int computationOptions) const { return BDCSVD(*this, computationOptions); } */ } // end namespace Eigen #endif