// -*- coding: utf-8 // vim: set fileencoding=utf-8 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_LEVENBERGMARQUARDT__H #define EIGEN_LEVENBERGMARQUARDT__H /** * \brief Performs non linear optimization over a non-linear function, * using a variant of the Levenberg Marquardt algorithm. * * Check wikipedia for more information. * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm */ template class LevenbergMarquardt { public: LevenbergMarquardt(FunctorType &_functor) : functor(_functor) { nfev = njev = iter = 0; fnorm=gnorm = 0.; } enum Status { Running = -1, ImproperInputParameters = 0, RelativeReductionTooSmall = 1, RelativeErrorTooSmall = 2, RelativeErrorAndReductionTooSmall = 3, CosinusTooSmall = 4, TooManyFunctionEvaluation = 5, FtolTooSmall = 6, XtolTooSmall = 7, GtolTooSmall = 8, UserAsked = 9 }; struct Parameters { Parameters() : factor(Scalar(100.)) , maxfev(400) , ftol(ei_sqrt(epsilon())) , xtol(ei_sqrt(epsilon())) , gtol(Scalar(0.)) , epsfcn(Scalar(0.)) {} Scalar factor; int maxfev; // maximum number of function evaluation Scalar ftol; Scalar xtol; Scalar gtol; Scalar epsfcn; }; typedef Matrix< Scalar, Dynamic, 1 > FVectorType; typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; Status lmder1( FVectorType &x, const Scalar tol = ei_sqrt(epsilon()) ); Status minimize( FVectorType &x, const int mode=1 ); Status minimizeInit( FVectorType &x, const int mode=1 ); Status minimizeOneStep( FVectorType &x, const int mode=1 ); static Status lmdif1( FunctorType &functor, FVectorType &x, int *nfev, const Scalar tol = ei_sqrt(epsilon()) ); Status lmstr1( FVectorType &x, const Scalar tol = ei_sqrt(epsilon()) ); Status minimizeOptimumStorage( FVectorType &x, const int mode=1 ); Status minimizeOptimumStorageInit( FVectorType &x, const int mode=1 ); Status minimizeOptimumStorageOneStep( FVectorType &x, const int mode=1 ); void resetParameters(void) { parameters = Parameters(); } Parameters parameters; FVectorType fvec, qtf, diag; JacobianType fjac; VectorXi ipvt; int nfev; int njev; int iter; Scalar fnorm, gnorm; private: FunctorType &functor; int n; int m; FVectorType wa1, wa2, wa3, wa4; Scalar par, sum; Scalar temp, temp1, temp2; Scalar delta; Scalar ratio; Scalar pnorm, xnorm, fnorm1, actred, dirder, prered; }; template typename LevenbergMarquardt::Status LevenbergMarquardt::lmder1( FVectorType &x, const Scalar tol ) { n = x.size(); m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return ImproperInputParameters; resetParameters(); parameters.ftol = tol; parameters.xtol = tol; parameters.maxfev = 100*(n+1); return minimize(x); } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimize( FVectorType &x, const int mode ) { Status status = minimizeInit(x, mode); while (status==Running) status = minimizeOneStep(x, mode); return status; } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimizeInit( FVectorType &x, const int mode ) { n = x.size(); m = functor.values(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(m); fvec.resize(m); ipvt.resize(n); fjac.resize(m, n); if (mode != 2) diag.resize(n); assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'"); qtf.resize(n); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.) return ImproperInputParameters; if (mode == 2) for (int j = 0; j < n; ++j) if (diag[j] <= 0.) return ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return UserAsked; fnorm = fvec.stableNorm(); /* initialize levenberg-marquardt parameter and iteration counter. */ par = 0.; iter = 1; return Running; } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimizeOneStep( FVectorType &x, const int mode ) { int i, j, l; /* calculate the jacobian matrix. */ int df_ret = functor.df(x, fjac); if (df_ret<0) return UserAsked; if (df_ret>0) // numerical diff, we evaluated the function df_ret times nfev += df_ret; else njev++; /* compute the qr factorization of the jacobian. */ ei_qrfac(m, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data(), wa2.data()); ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1) /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (mode != 2) for (j = 0; j < n; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) diag[j] = 1.; } /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ wa3 = diag.cwise() * x; xnorm = wa3.stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* form (q transpose)*fvec and store the first n components in */ /* qtf. */ wa4 = fvec; for (j = 0; j < n; ++j) { if (fjac(j,j) != 0.) { sum = 0.; for (i = j; i < m; ++i) sum += fjac(i,j) * wa4[i]; temp = -sum / fjac(j,j); for (i = j; i < m; ++i) wa4[i] += fjac(i,j) * temp; } fjac(j,j) = wa1[j]; qtf[j] = wa4[j]; } /* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm != 0.) for (j = 0; j < n; ++j) { l = ipvt[j]; if (wa2[l] != 0.) { sum = 0.; for (i = 0; i <= j; ++i) sum += fjac(i,j) * (qtf[i] / fnorm); /* Computing MAX */ gnorm = std::max(gnorm, ei_abs(sum / wa2[l])); } } /* test for convergence of the gradient norm. */ if (gnorm <= parameters.gtol) return CosinusTooSmall; /* rescale if necessary. */ if (mode != 2) /* Computing MAX */ diag = diag.cwise().max(wa2); /* beginning of the inner loop. */ do { /* determine the levenberg-marquardt parameter. */ ei_lmpar(fjac, ipvt, diag, qtf, delta, par, wa1, wa2); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; wa3 = diag.cwise() * wa1; pnorm = wa3.stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = std::min(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - ei_abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ wa3.fill(0.); for (j = 0; j < n; ++j) { l = ipvt[j]; temp = wa1[l]; for (i = 0; i <= j; ++i) wa3[i] += fjac(i,j) * temp; } temp1 = ei_abs2(wa3.stableNorm() / fnorm); temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm); /* Computing 2nd power */ prered = temp1 + temp2 / Scalar(.5); dirder = -(temp1 + temp2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) ratio = actred / prered; /* update the step bound. */ if (ratio <= Scalar(.25)) { if (actred >= 0.) temp = Scalar(.5); if (actred < 0.) temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred); if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1)) temp = Scalar(.1); /* Computing MIN */ delta = temp * std::min(delta, pnorm / Scalar(.1)); par /= temp; } else if (!(par != 0. && ratio < Scalar(.75))) { delta = pnorm / Scalar(.5); par = Scalar(.5) * par; } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwise() * x; fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* tests for convergence. */ if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm) return RelativeErrorAndReductionTooSmall; if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.) return RelativeReductionTooSmall; if (delta <= parameters.xtol * xnorm) return RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return TooManyFunctionEvaluation; if (ei_abs(actred) <= epsilon() && prered <= epsilon() && Scalar(.5) * ratio <= 1.) return FtolTooSmall; if (delta <= epsilon() * xnorm) return XtolTooSmall; if (gnorm <= epsilon()) return GtolTooSmall; /* end of the inner loop. repeat if iteration unsuccessful. */ } while (ratio < Scalar(1e-4)); /* end of the outer loop. */ return Running; } template typename LevenbergMarquardt::Status LevenbergMarquardt::lmstr1( FVectorType &x, const Scalar tol ) { n = x.size(); m = functor.values(); JacobianType fjac(m, n); VectorXi ipvt; /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return ImproperInputParameters; resetParameters(); parameters.ftol = tol; parameters.xtol = tol; parameters.maxfev = 100*(n+1); return minimizeOptimumStorage(x); } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimizeOptimumStorageInit( FVectorType &x, const int mode ) { n = x.size(); m = functor.values(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(m); fvec.resize(m); ipvt.resize(n); fjac.resize(m, n); if (mode != 2) diag.resize(n); assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'"); qtf.resize(n); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.) return ImproperInputParameters; if (mode == 2) for (int j = 0; j < n; ++j) if (diag[j] <= 0.) return ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return UserAsked; fnorm = fvec.stableNorm(); /* initialize levenberg-marquardt parameter and iteration counter. */ par = 0.; iter = 1; return Running; } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimizeOptimumStorageOneStep( FVectorType &x, const int mode ) { int i, j, l; bool sing; /* compute the qr factorization of the jacobian matrix */ /* calculated one row at a time, while simultaneously */ /* forming (q transpose)*fvec and storing the first */ /* n components in qtf. */ qtf.fill(0.); fjac.fill(0.); int rownb = 2; for (i = 0; i < m; ++i) { if (functor.df(x, wa3, rownb) < 0) return UserAsked; temp = fvec[i]; ei_rwupdt(n, fjac.data(), fjac.rows(), wa3.data(), qtf.data(), &temp, wa1.data(), wa2.data()); ++rownb; } ++njev; /* if the jacobian is rank deficient, call qrfac to */ /* reorder its columns and update the components of qtf. */ sing = false; for (j = 0; j < n; ++j) { if (fjac(j,j) == 0.) { sing = true; } ipvt[j] = j; wa2[j] = fjac.col(j).start(j).stableNorm(); } if (sing) { ipvt.cwise()+=1; ei_qrfac(n, n, fjac.data(), fjac.rows(), true, ipvt.data(), wa1.data(), wa2.data()); ipvt.cwise()-=1; // qrfac() creates ipvt with fortran convetion (1->n), convert it to c (0->n-1) for (j = 0; j < n; ++j) { if (fjac(j,j) != 0.) { sum = 0.; for (i = j; i < n; ++i) sum += fjac(i,j) * qtf[i]; temp = -sum / fjac(j,j); for (i = j; i < n; ++i) qtf[i] += fjac(i,j) * temp; } fjac(j,j) = wa1[j]; } } /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (mode != 2) for (j = 0; j < n; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) diag[j] = 1.; } /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ wa3 = diag.cwise() * x; xnorm = wa3.stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm != 0.) for (j = 0; j < n; ++j) { l = ipvt[j]; if (wa2[l] != 0.) { sum = 0.; for (i = 0; i <= j; ++i) sum += fjac(i,j) * (qtf[i] / fnorm); /* Computing MAX */ gnorm = std::max(gnorm, ei_abs(sum / wa2[l])); } } /* test for convergence of the gradient norm. */ if (gnorm <= parameters.gtol) return CosinusTooSmall; /* rescale if necessary. */ if (mode != 2) /* Computing MAX */ diag = diag.cwise().max(wa2); /* beginning of the inner loop. */ do { /* determine the levenberg-marquardt parameter. */ ei_lmpar(fjac, ipvt, diag, qtf, delta, par, wa1, wa2); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; wa3 = diag.cwise() * wa1; pnorm = wa3.stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = std::min(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - ei_abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction and */ /* the scaled directional derivative. */ wa3.fill(0.); for (j = 0; j < n; ++j) { l = ipvt[j]; temp = wa1[l]; for (i = 0; i <= j; ++i) wa3[i] += fjac(i,j) * temp; } temp1 = ei_abs2(wa3.stableNorm() / fnorm); temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm); /* Computing 2nd power */ prered = temp1 + temp2 / Scalar(.5); dirder = -(temp1 + temp2); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered != 0.) ratio = actred / prered; /* update the step bound. */ if (ratio <= Scalar(.25)) { if (actred >= 0.) temp = Scalar(.5); if (actred < 0.) temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred); if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1)) temp = Scalar(.1); /* Computing MIN */ delta = temp * std::min(delta, pnorm / Scalar(.1)); par /= temp; } else if (!(par != 0. && ratio < Scalar(.75))) { delta = pnorm / Scalar(.5); par = Scalar(.5) * par; } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwise() * x; fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* tests for convergence. */ if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm) return RelativeErrorAndReductionTooSmall; if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.) return RelativeReductionTooSmall; if (delta <= parameters.xtol * xnorm) return RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return TooManyFunctionEvaluation; if (ei_abs(actred) <= epsilon() && prered <= epsilon() && Scalar(.5) * ratio <= 1.) return FtolTooSmall; if (delta <= epsilon() * xnorm) return XtolTooSmall; if (gnorm <= epsilon()) return GtolTooSmall; /* end of the inner loop. repeat if iteration unsuccessful. */ } while (ratio < Scalar(1e-4)); /* end of the outer loop. */ return Running; } template typename LevenbergMarquardt::Status LevenbergMarquardt::minimizeOptimumStorage( FVectorType &x, const int mode ) { Status status = minimizeOptimumStorageInit(x, mode); while (status==Running) status = minimizeOptimumStorageOneStep(x, mode); return status; } template typename LevenbergMarquardt::Status LevenbergMarquardt::lmdif1( FunctorType &functor, FVectorType &x, int *nfev, const Scalar tol ) { int n = x.size(); int m = functor.values(); /* check the input parameters for errors. */ if (n <= 0 || m < n || tol < 0.) return ImproperInputParameters; NumericalDiff numDiff(functor); // embedded LevenbergMarquardt LevenbergMarquardt > lm(numDiff); lm.parameters.ftol = tol; lm.parameters.xtol = tol; lm.parameters.maxfev = 200*(n+1); Status info = Status(lm.minimize(x)); if (nfev) * nfev = lm.nfev; return info; } //vim: ai ts=4 sts=4 et sw=4 #endif // EIGEN_LEVENBERGMARQUARDT__H