// -*- coding: utf-8 // vim: set fileencoding=utf-8 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_HYBRIDNONLINEARSOLVER_H #define EIGEN_HYBRIDNONLINEARSOLVER_H /** * \brief Finds a zero of a system of n * nonlinear functions in n variables by a modification of the Powell * hybrid method ("dogleg"). * * The user must provide a subroutine which calculates the * functions. The Jacobian is either provided by the user, or approximated * using a forward-difference method. * */ template class HybridNonLinearSolver { public: HybridNonLinearSolver(FunctorType &_functor) : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; } enum Status { Running = -1, ImproperInputParameters = 0, RelativeErrorTooSmall = 1, TooManyFunctionEvaluation = 2, TolTooSmall = 3, NotMakingProgressJacobian = 4, NotMakingProgressIterations = 5, UserAksed = 6 }; struct Parameters { Parameters() : factor(Scalar(100.)) , maxfev(1000) , xtol(ei_sqrt(epsilon())) , nb_of_subdiagonals(-1) , nb_of_superdiagonals(-1) , epsfcn(Scalar(0.)) {} Scalar factor; int maxfev; // maximum number of function evaluation Scalar xtol; int nb_of_subdiagonals; int nb_of_superdiagonals; Scalar epsfcn; }; typedef Matrix< Scalar, Dynamic, 1 > FVectorType; typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; Status hybrj1( FVectorType &x, const Scalar tol = ei_sqrt(epsilon()) ); Status solveInit( FVectorType &x, const int mode=1 ); Status solveOneStep( FVectorType &x, const int mode=1 ); Status solve( FVectorType &x, const int mode=1 ); Status hybrd1( FVectorType &x, const Scalar tol = ei_sqrt(epsilon()) ); Status solveNumericalDiffInit( FVectorType &x, const int mode=1 ); Status solveNumericalDiffOneStep( FVectorType &x, const int mode=1 ); Status solveNumericalDiff( FVectorType &x, const int mode=1 ); void resetParameters(void) { parameters = Parameters(); } Parameters parameters; FVectorType fvec, R, qtf, diag; JacobianType fjac; int nfev; int njev; int iter; Scalar fnorm; private: FunctorType &functor; int n; Scalar sum; bool sing; Scalar temp; Scalar delta; bool jeval; int ncsuc; Scalar ratio; Scalar pnorm, xnorm, fnorm1; int nslow1, nslow2; int ncfail; Scalar actred, prered; FVectorType wa1, wa2, wa3, wa4; }; template typename HybridNonLinearSolver::Status HybridNonLinearSolver::hybrj1( FVectorType &x, const Scalar tol ) { n = x.size(); /* check the input parameters for errors. */ if (n <= 0 || tol < 0.) return ImproperInputParameters; resetParameters(); parameters.maxfev = 100*(n+1); parameters.xtol = tol; diag.setConstant(n, 1.); return solve( x, 2 ); } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solveInit( FVectorType &x, const int mode ) { n = x.size(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); fvec.resize(n); qtf.resize(n); R.resize( (n*(n+1))/2); fjac.resize(n, n); if (mode != 2) diag.resize(n); assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'"); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. ) return ImproperInputParameters; if (mode == 2) for (int j = 0; j < n; ++j) if (diag[j] <= 0.) return ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return UserAksed; fnorm = fvec.stableNorm(); /* initialize iteration counter and monitors. */ iter = 1; ncsuc = 0; ncfail = 0; nslow1 = 0; nslow2 = 0; return Running; } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solveOneStep( FVectorType &x, const int mode ) { int i, j, l, iwa[1]; jeval = true; /* calculate the jacobian matrix. */ if ( functor.df(x, fjac) < 0) return UserAksed; ++njev; wa2 = fjac.colwise().blueNorm(); /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (mode != 2) for (j = 0; j < n; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) diag[j] = 1.; } /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ wa3 = diag.cwise() * x; xnorm = wa3.stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the qr factorization of the jacobian. */ ei_qrfac(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data()); /* form (q transpose)*fvec and store in qtf. */ qtf = fvec; for (j = 0; j < n; ++j) if (fjac(j,j) != 0.) { sum = 0.; for (i = j; i < n; ++i) sum += fjac(i,j) * qtf[i]; temp = -sum / fjac(j,j); for (i = j; i < n; ++i) qtf[i] += fjac(i,j) * temp; } /* copy the triangular factor of the qr factorization into r. */ sing = false; for (j = 0; j < n; ++j) { l = j; for (i = 0; i < j; ++i) { R[l] = fjac(i,j); l = l + n - i -1; } R[l] = wa1[j]; if (wa1[j] == 0.) sing = true; } /* accumulate the orthogonal factor in fjac. */ ei_qform(n, n, fjac.data(), fjac.rows(), wa1.data()); /* rescale if necessary. */ /* Computing MAX */ if (mode != 2) diag = diag.cwise().max(wa2); /* beginning of the inner loop. */ while (true) { /* determine the direction p. */ ei_dogleg(R, diag, qtf, delta, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; wa3 = diag.cwise() * wa1; pnorm = wa3.stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = std::min(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return UserAksed; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - ei_abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction. */ l = 0; for (i = 0; i < n; ++i) { sum = 0.; for (j = i; j < n; ++j) { sum += R[l] * wa1[j]; ++l; } wa3[i] = qtf[i] + sum; } temp = wa3.stableNorm(); prered = 0.; if (temp < fnorm) /* Computing 2nd power */ prered = 1. - ei_abs2(temp / fnorm); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered > 0.) ratio = actred / prered; /* update the step bound. */ if (ratio < Scalar(.1)) { ncsuc = 0; ++ncfail; delta = Scalar(.5) * delta; } else { ncfail = 0; ++ncsuc; if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */ delta = std::max(delta, pnorm / Scalar(.5)); if (ei_abs(ratio - 1.) <= Scalar(.1)) { delta = pnorm / Scalar(.5); } } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwise() * x; fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* determine the progress of the iteration. */ ++nslow1; if (actred >= Scalar(.001)) nslow1 = 0; if (jeval) ++nslow2; if (actred >= Scalar(.1)) nslow2 = 0; /* test for convergence. */ if (delta <= parameters.xtol * xnorm || fnorm == 0.) return RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return TooManyFunctionEvaluation; if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon() * xnorm) return TolTooSmall; if (nslow2 == 5) return NotMakingProgressJacobian; if (nslow1 == 10) return NotMakingProgressIterations; /* criterion for recalculating jacobian. */ if (ncfail == 2) break; // leave inner loop and go for the next outer loop iteration /* calculate the rank one modification to the jacobian */ /* and update qtf if necessary. */ for (j = 0; j < n; ++j) { sum = wa4.dot(fjac.col(j)); wa2[j] = (sum - wa3[j]) / pnorm; wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm); if (ratio >= Scalar(1e-4)) qtf[j] = sum; } /* compute the qr factorization of the updated jacobian. */ ei_r1updt(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing); ei_r1mpyq(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data()); ei_r1mpyq(1, n, qtf.data(), 1, wa2.data(), wa3.data()); /* end of the inner loop. */ jeval = false; } /* end of the outer loop. */ return Running; } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solve( FVectorType &x, const int mode ) { Status status = solveInit(x, mode); while (status==Running) status = solveOneStep(x, mode); return status; } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::hybrd1( FVectorType &x, const Scalar tol ) { n = x.size(); /* check the input parameters for errors. */ if (n <= 0 || tol < 0.) return ImproperInputParameters; resetParameters(); parameters.maxfev = 200*(n+1); parameters.xtol = tol; diag.setConstant(n, 1.); return solveNumericalDiff( x, 2 ); } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solveNumericalDiffInit( FVectorType &x, const int mode ) { n = x.size(); if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); qtf.resize(n); R.resize( (n*(n+1))/2); fjac.resize(n, n); fvec.resize(n); if (mode != 2) diag.resize(n); assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'"); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. ) return ImproperInputParameters; if (mode == 2) for (int j = 0; j < n; ++j) if (diag[j] <= 0.) return ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return UserAksed; fnorm = fvec.stableNorm(); /* initialize iteration counter and monitors. */ iter = 1; ncsuc = 0; ncfail = 0; nslow1 = 0; nslow2 = 0; return Running; } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solveNumericalDiffOneStep( FVectorType &x, const int mode ) { int i, j, l, iwa[1]; jeval = true; if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; /* calculate the jacobian matrix. */ if (ei_fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0) return UserAksed; nfev += std::min(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n); wa2 = fjac.colwise().blueNorm(); /* on the first iteration and if mode is 1, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (mode != 2) for (j = 0; j < n; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) diag[j] = 1.; } /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ wa3 = diag.cwise() * x; xnorm = wa3.stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the qr factorization of the jacobian. */ ei_qrfac(n, n, fjac.data(), fjac.rows(), false, iwa, wa1.data()); /* form (q transpose)*fvec and store in qtf. */ qtf = fvec; for (j = 0; j < n; ++j) if (fjac(j,j) != 0.) { sum = 0.; for (i = j; i < n; ++i) sum += fjac(i,j) * qtf[i]; temp = -sum / fjac(j,j); for (i = j; i < n; ++i) qtf[i] += fjac(i,j) * temp; } /* copy the triangular factor of the qr factorization into r. */ sing = false; for (j = 0; j < n; ++j) { l = j; for (i = 0; i < j; ++i) { R[l] = fjac(i,j); l = l + n - i -1; } R[l] = wa1[j]; if (wa1[j] == 0.) sing = true; } /* accumulate the orthogonal factor in fjac. */ ei_qform(n, n, fjac.data(), fjac.rows(), wa1.data()); /* rescale if necessary. */ /* Computing MAX */ if (mode != 2) diag = diag.cwise().max(wa2); /* beginning of the inner loop. */ while (true) { /* determine the direction p. */ ei_dogleg(R, diag, qtf, delta, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; wa3 = diag.cwise() * wa1; pnorm = wa3.stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = std::min(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return UserAksed; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - ei_abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction. */ l = 0; for (i = 0; i < n; ++i) { sum = 0.; for (j = i; j < n; ++j) { sum += R[l] * wa1[j]; ++l; } wa3[i] = qtf[i] + sum; } temp = wa3.stableNorm(); prered = 0.; if (temp < fnorm) /* Computing 2nd power */ prered = 1. - ei_abs2(temp / fnorm); /* compute the ratio of the actual to the predicted */ /* reduction. */ ratio = 0.; if (prered > 0.) ratio = actred / prered; /* update the step bound. */ if (ratio < Scalar(.1)) { ncsuc = 0; ++ncfail; delta = Scalar(.5) * delta; } else { ncfail = 0; ++ncsuc; if (ratio >= Scalar(.5) || ncsuc > 1) /* Computing MAX */ delta = std::max(delta, pnorm / Scalar(.5)); if (ei_abs(ratio - 1.) <= Scalar(.1)) { delta = pnorm / Scalar(.5); } } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwise() * x; fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* determine the progress of the iteration. */ ++nslow1; if (actred >= Scalar(.001)) nslow1 = 0; if (jeval) ++nslow2; if (actred >= Scalar(.1)) nslow2 = 0; /* test for convergence. */ if (delta <= parameters.xtol * xnorm || fnorm == 0.) return RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return TooManyFunctionEvaluation; if (Scalar(.1) * std::max(Scalar(.1) * delta, pnorm) <= epsilon() * xnorm) return TolTooSmall; if (nslow2 == 5) return NotMakingProgressJacobian; if (nslow1 == 10) return NotMakingProgressIterations; /* criterion for recalculating jacobian approximation */ /* by forward differences. */ if (ncfail == 2) break; // leave inner loop and go for the next outer loop iteration /* calculate the rank one modification to the jacobian */ /* and update qtf if necessary. */ for (j = 0; j < n; ++j) { sum = wa4.dot(fjac.col(j)); wa2[j] = (sum - wa3[j]) / pnorm; wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm); if (ratio >= Scalar(1e-4)) qtf[j] = sum; } /* compute the qr factorization of the updated jacobian. */ ei_r1updt(n, n, R.data(), R.size(), wa1.data(), wa2.data(), wa3.data(), &sing); ei_r1mpyq(n, n, fjac.data(), fjac.rows(), wa2.data(), wa3.data()); ei_r1mpyq(1, n, qtf.data(), 1, wa2.data(), wa3.data()); /* end of the inner loop. */ jeval = false; } /* end of the outer loop. */ return Running; } template typename HybridNonLinearSolver::Status HybridNonLinearSolver::solveNumericalDiff( FVectorType &x, const int mode ) { Status status = solveNumericalDiffInit(x, mode); while (status==Running) status = solveNumericalDiffOneStep(x, mode); return status; } //vim: ai ts=4 sts=4 et sw=4 #endif // EIGEN_HYBRIDNONLINEARSOLVER_H