#ifndef EIGEN_COMPLEX_H #define EIGEN_COMPLEX_H // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Mark Borgerding mark a borgerding net // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . // Eigen::Complex reuses as much as possible from std::complex // and allows easy conversion to and from, even at the pointer level. #include namespace Eigen { template struct castable_pointer { castable_pointer(_NativeData * ptr) : _ptr(ptr) { } operator _NativeData * () {return _ptr;} operator _PunnedData * () {return reinterpret_cast<_PunnedData*>(_ptr);} operator const _NativeData * () const {return _ptr;} operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);} private: _NativeData * _ptr; }; template struct const_castable_pointer { const_castable_pointer(_NativeData * ptr) : _ptr(ptr) { } operator const _NativeData * () const {return _ptr;} operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);} private: _NativeData * _ptr; }; template struct Complex { typedef typename std::complex StandardComplex; typedef T value_type; // constructors Complex() {} Complex(const T& re, const T& im = T()) : _re(re),_im(im) { } Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {} template Complex(const Complex&other): _re(other.real()) ,_im(other.imag()) {} template Complex(const std::complex&other): _re(other.real()) ,_im(other.imag()) {} // allow binary access to the object as a std::complex typedef castable_pointer< Complex, StandardComplex > pointer_type; typedef const_castable_pointer< Complex, StandardComplex > const_pointer_type; inline pointer_type operator & () {return pointer_type(this);} inline const_pointer_type operator & () const {return const_pointer_type(this);} inline operator StandardComplex () const {return std_type();} inline operator StandardComplex & () {return std_type();} inline const StandardComplex & std_type() const {return *reinterpret_cast(this);} inline StandardComplex & std_type() {return *reinterpret_cast(this);} // every sort of accessor and mutator that has ever been in fashion. // For a brief history, search for "std::complex over-encapsulated" // http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387 inline const T & real() const {return _re;} inline const T & imag() const {return _im;} inline T & real() {return _re;} inline T & imag() {return _im;} inline T & real(const T & x) {return _re=x;} inline T & imag(const T & x) {return _im=x;} inline void set_real(const T & x) {_re = x;} inline void set_imag(const T & x) {_im = x;} // *** complex member functions: *** inline Complex& operator= (const T& val) { _re=val;_im=0;return *this; } inline Complex& operator+= (const T& val) {_re+=val;return *this;} inline Complex& operator-= (const T& val) {_re-=val;return *this;} inline Complex& operator*= (const T& val) {_re*=val;_im*=val;return *this; } inline Complex& operator/= (const T& val) {_re/=val;_im/=val;return *this; } inline Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;} inline Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;} template Complex& operator= (const Complex& rhs) { _re=rhs._re;_im=rhs._im;return *this;} template Complex& operator+= (const Complex& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;} template Complex& operator-= (const Complex& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;} template Complex& operator*= (const Complex& rhs) { this->std_type() *= rhs.std_type(); return *this; } template Complex& operator/= (const Complex& rhs) { this->std_type() /= rhs.std_type(); return *this; } private: T _re; T _im; }; //template T ei_to_std( const T & x) {return x;} template std::complex ei_to_std( const Complex & x) {return x.std_type();} // 26.2.6 operators template Complex operator+(const Complex& rhs) {return rhs;} template Complex operator-(const Complex& rhs) {return -ei_to_std(rhs);} template Complex operator+(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);} template Complex operator-(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);} template Complex operator*(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);} template Complex operator/(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);} template bool operator==(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);} template bool operator!=(const Complex& lhs, const Complex& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);} template Complex operator+(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); } template Complex operator-(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); } template Complex operator*(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); } template Complex operator/(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); } template bool operator==(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); } template bool operator!=(const Complex& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); } template Complex operator+(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); } template Complex operator-(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); } template Complex operator*(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); } template Complex operator/(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); } template bool operator==(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); } template bool operator!=(const T& lhs, const Complex& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); } template std::basic_istream& operator>> (std::basic_istream& istr, Complex& rhs) { return istr >> rhs.std_type(); } template std::basic_ostream& operator<< (std::basic_ostream& ostr, const Complex& rhs) { return ostr << rhs.std_type(); } // 26.2.7 values: template T real(const Complex&x) {return real(ei_to_std(x));} template T abs(const Complex&x) {return abs(ei_to_std(x));} template T arg(const Complex&x) {return arg(ei_to_std(x));} template T norm(const Complex&x) {return norm(ei_to_std(x));} template Complex conj(const Complex&x) { return conj(ei_to_std(x));} template Complex polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));} // 26.2.8 transcendentals: template Complex cos (const Complex&x){return cos(ei_to_std(x));} template Complex cosh (const Complex&x){return cosh(ei_to_std(x));} template Complex exp (const Complex&x){return exp(ei_to_std(x));} template Complex log (const Complex&x){return log(ei_to_std(x));} template Complex log10 (const Complex&x){return log10(ei_to_std(x));} template Complex pow(const Complex&x, int p) {return pow(ei_to_std(x),p);} template Complex pow(const Complex&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));} template Complex pow(const Complex&x, const Complex&p) {return pow(ei_to_std(x),ei_to_std(p));} template Complex pow(const T&x, const Complex&p) {return pow(ei_to_std(x),ei_to_std(p));} template Complex sin (const Complex&x){return sin(ei_to_std(x));} template Complex sinh (const Complex&x){return sinh(ei_to_std(x));} template Complex sqrt (const Complex&x){return sqrt(ei_to_std(x));} template Complex tan (const Complex&x){return tan(ei_to_std(x));} template Complex tanh (const Complex&x){return tanh(ei_to_std(x));} template struct NumTraits > { typedef _Real Real; typedef Complex<_Real> FloatingPoint; enum { IsComplex = 1, HasFloatingPoint = NumTraits::HasFloatingPoint, ReadCost = 2, AddCost = 2 * NumTraits::AddCost, MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost }; }; } #endif /* vim: set filetype=cpp et sw=2 ts=2 ai: */