// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: eigen@codeplay.com // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // General include header of SYCL target for Tensor Module #ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCLFUNCTORS_H #define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCLFUNCTORS_H namespace Eigen { namespace TensorSycl { namespace internal { template struct GenericKernelReducer{ OP op; OutputAccessor aOut; ptrdiff_t out_offset; InputAccessor aI; LocalAccessor scratch; size_t length, local; GenericKernelReducer(OP op_, OutputAccessor aOut_, ptrdiff_t out_offset_, InputAccessor aI_, LocalAccessor scratch_, size_t length_, size_t local_) : op(op_), aOut(aOut_), out_offset(out_offset_), aI(aI_), scratch(scratch_), length(length_), local(local_){} void operator()(cl::sycl::nd_item<1> itemID) { size_t globalid = itemID.get_global(0); size_t localid = itemID.get_local(0); /* All threads collectively read from global memory into local. * The barrier ensures all threads' IO is resolved before * execution continues (strictly speaking, all threads within * a single work-group - there is no co-ordination between * work-groups, only work-items). */ if (globalid < length) { scratch[localid] = aI[globalid]; } itemID.barrier(cl::sycl::access::fence_space::local_space); /* Apply the reduction operation between the current local * id and the one on the other half of the vector. */ if (globalid < length) { auto min = (length < local) ? length : local; for (size_t offset = min / 2; offset > 0; offset /= 2) { if (localid < offset) { auto accum = op.initialize(); op.reduce(scratch[localid], &accum); op.reduce(scratch[localid + offset], &accum); op.finalize(accum); scratch[localid]=accum; //scratch[localid] += scratch[localid + offset]; } itemID.barrier(cl::sycl::access::fence_space::local_space); } /* The final result will be stored in local id 0. */ if (localid == 0) { aI[itemID.get_group(0)] = scratch[localid]; if((length<=local) && globalid ==0){ auto aOutPtr = ConvertToActualTypeSycl(CoeffReturnType, aOut); aOutPtr[0 + ConvertToActualSyclOffset(CoeffReturnType, out_offset)]=scratch[0]; } } } } }; /// ReductionFunctor template < typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typename Dims, typename Op, typename Index> class ReductionFunctor { public: typedef typename TensorSycl::internal::createPlaceHolderExpression::Type PlaceHolderExpr; typedef cl::sycl::accessor write_accessor; ReductionFunctor(write_accessor output_accessor_, ptrdiff_t out_offset_, FunctorExpr functors_, Tuple_of_Acc tuple_of_accessors_,Dims dims_, Op functor_, Index range_, Index) :output_accessor(output_accessor_), out_offset(out_offset_), functors(functors_), tuple_of_accessors(tuple_of_accessors_), dims(dims_), functor(functor_), range(range_) {} void operator()(cl::sycl::nd_item<1> itemID) { typedef typename ConvertToDeviceExpression::Type DevExpr; auto device_expr = createDeviceExpression(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= Eigen::TensorReductionOp(device_expr.expr, dims, functor); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. typedef Eigen::TensorEvaluator DeviceSelf; auto device_self_evaluator = Eigen::TensorEvaluator(device_self_expr, Eigen::SyclKernelDevice()); auto output_accessor_ptr =ConvertToActualTypeSycl(typename DeviceSelf::CoeffReturnType, output_accessor); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=static_cast(itemID.get_global_linear_id()); if (globalid< range) { typename DeviceSelf::CoeffReturnType accum = functor.initialize(); Eigen::internal::GenericDimReducer::reduce(device_self_evaluator, device_self_evaluator.firstInput(static_cast(globalid)),const_cast(functor), &accum); functor.finalize(accum); output_accessor_ptr[globalid + ConvertToActualSyclOffset(typename DeviceSelf::CoeffReturnType, out_offset)]= accum; } } private: write_accessor output_accessor; ptrdiff_t out_offset; FunctorExpr functors; Tuple_of_Acc tuple_of_accessors; Dims dims; Op functor; Index range; }; template < typename HostExpr, typename FunctorExpr, typename Tuple_of_Acc, typename Dims, typename Index> class ReductionFunctor, Index> { public: typedef typename TensorSycl::internal::createPlaceHolderExpression::Type PlaceHolderExpr; typedef cl::sycl::accessor write_accessor; typedef Eigen::internal::SumReducer Op; ReductionFunctor(write_accessor output_accessor_, ptrdiff_t out_offset_, FunctorExpr functors_, Tuple_of_Acc tuple_of_accessors_,Dims dims_, Eigen::internal::MeanReducer, Index range_, Index num_values_to_reduce_) :output_accessor(output_accessor_), out_offset(out_offset_), functors(functors_), tuple_of_accessors(tuple_of_accessors_), dims(dims_), functor(Op()), range(range_), num_values_to_reduce(num_values_to_reduce_) {} void operator()(cl::sycl::nd_item<1> itemID) { typedef typename ConvertToDeviceExpression::Type DevExpr; auto device_expr = createDeviceExpression(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= Eigen::TensorReductionOp(device_expr.expr, dims, functor); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. typedef Eigen::TensorEvaluator DeviceSelf; auto device_self_evaluator = Eigen::TensorEvaluator(device_self_expr, Eigen::SyclKernelDevice()); auto output_accessor_ptr =ConvertToActualTypeSycl(typename DeviceSelf::CoeffReturnType, output_accessor); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=static_cast(itemID.get_global_linear_id()); if (globalid< range) { typename DeviceSelf::CoeffReturnType accum = functor.initialize(); Eigen::internal::GenericDimReducer::reduce(device_self_evaluator, device_self_evaluator.firstInput(static_cast(globalid)),const_cast(functor), &accum); functor.finalize(accum); output_accessor_ptr[globalid+ ConvertToActualSyclOffset(typename DeviceSelf::CoeffReturnType, out_offset)]= accum/num_values_to_reduce; } } private: write_accessor output_accessor; ptrdiff_t out_offset; FunctorExpr functors; Tuple_of_Acc tuple_of_accessors; Dims dims; Op functor; Index range; Index num_values_to_reduce; }; template class FullReductionKernelFunctor{ public: typedef typename TensorSycl::internal::createPlaceHolderExpression::Type PlaceHolderExpr; OutAccessor tmp_global_accessor; Index rng , remaining, red_factor; Op op; Dims dims; FunctorExpr functors; TupleType tuple_of_accessors; FullReductionKernelFunctor(OutAccessor acc, Index rng_, Index remaining_, Index red_factor_, Op op_, Dims dims_, FunctorExpr functors_, TupleType t_acc) :tmp_global_accessor(acc), rng(rng_), remaining(remaining_), red_factor(red_factor_),op(op_), dims(dims_), functors(functors_), tuple_of_accessors(t_acc){} void operator()(cl::sycl::nd_item<1> itemID) { typedef typename TensorSycl::internal::ConvertToDeviceExpression::Type DevExpr; auto device_expr = TensorSycl::internal::createDeviceExpression(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= Eigen::TensorReductionOp(device_expr.expr, dims, op); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. auto device_self_evaluator = Eigen::TensorEvaluator(device_self_expr, Eigen::SyclKernelDevice()); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=itemID.get_global_linear_id(); tmp_global_accessor.get_pointer()[globalid]=(globalid::reduce(device_self_evaluator, static_cast(red_factor*globalid), red_factor, const_cast(op)) : static_cast(op.initialize()); if(remaining!=0 && globalid==0 ){ // this will add the rest of input buffer when the input size is not devidable to red_factor. auto remaining_reduce =Eigen::internal::InnerMostDimReducer:: reduce(device_self_evaluator, static_cast(red_factor*(rng)), static_cast(remaining), const_cast(op)); auto accum = op.initialize(); op.reduce(tmp_global_accessor.get_pointer()[0], &accum); op.reduce(remaining_reduce, &accum); op.finalize(accum); tmp_global_accessor.get_pointer()[0]=accum; } } }; template class FullReductionKernelFunctor, Dims, Index, TupleType>{ public: typedef typename TensorSycl::internal::createPlaceHolderExpression::Type PlaceHolderExpr; typedef Eigen::internal::SumReducer Op; OutAccessor tmp_global_accessor; Index rng , remaining, red_factor; Op op; Dims dims; FunctorExpr functors; TupleType tuple_of_accessors; FullReductionKernelFunctor(OutAccessor acc, Index rng_, Index remaining_, Index red_factor_, Eigen::internal::MeanReducer, Dims dims_, FunctorExpr functors_, TupleType t_acc) :tmp_global_accessor(acc), rng(rng_), remaining(remaining_), red_factor(red_factor_),op(Op()), dims(dims_), functors(functors_), tuple_of_accessors(t_acc){} void operator()(cl::sycl::nd_item<1> itemID) { typedef typename TensorSycl::internal::ConvertToDeviceExpression::Type DevExpr; auto device_expr = TensorSycl::internal::createDeviceExpression(functors, tuple_of_accessors); /// reduction cannot be captured automatically through our device conversion recursion. The reason is that reduction has two behaviour /// the first behaviour is when it is used as a root to lauch the sub-kernel. The second one is when it is treated as a leafnode to pass the /// calculated result to its parent kernel. While the latter is automatically detected through our device expression generator. The former is created here. const auto device_self_expr= Eigen::TensorReductionOp(device_expr.expr, dims, op); /// This is the evaluator for device_self_expr. This is exactly similar to the self which has been passed to run function. The difference is /// the device_evaluator is detectable and recognisable on the device. auto device_self_evaluator = Eigen::TensorEvaluator(device_self_expr, Eigen::SyclKernelDevice()); /// const cast added as a naive solution to solve the qualifier drop error auto globalid=itemID.get_global_linear_id(); auto scale = (rng*red_factor) + remaining; tmp_global_accessor.get_pointer()[globalid]= (globalid::reduce(device_self_evaluator, static_cast(red_factor*globalid), red_factor, const_cast(op)))/scale) :static_cast(op.initialize())/scale; if(remaining!=0 && globalid==0 ){ // this will add the rest of input buffer when the input size is not devidable to red_factor. auto remaining_reduce =Eigen::internal::InnerMostDimReducer::reduce(device_self_evaluator, static_cast(red_factor*(rng)), static_cast(remaining), const_cast(op)); auto accum = op.initialize(); tmp_global_accessor.get_pointer()[0]= tmp_global_accessor.get_pointer()[0]*scale; op.reduce(tmp_global_accessor.get_pointer()[0], &accum); op.reduce(remaining_reduce, &accum); op.finalize(accum); tmp_global_accessor.get_pointer()[0]=accum/scale; } } }; } } } #endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSORSYCLFUNCTORS_H