// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H #define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H namespace Eigen { /** \class TensorShuffling * \ingroup CXX11_Tensor_Module * * \brief Tensor shuffling class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; typedef typename XprTraits::PointerType PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorShufflingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorShufflingOp type; }; } // end namespace internal template class TensorShufflingOp : public TensorBase > { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle) : m_xpr(expr), m_shuffle(shuffle) {} EIGEN_DEVICE_FUNC const Shuffle& shufflePermutation() const { return m_shuffle; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Shuffle m_shuffle; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorEvaluator, Device> Self; typedef TensorShufflingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; enum { IsAligned = false, PacketAccess = (PacketType::size > 1), BlockAccess = TensorEvaluator::BlockAccess, Layout = TensorEvaluator::Layout, CoordAccess = false, // to be implemented RawAccess = false }; using ScalarNoConst = typename internal::remove_const::type; using TensorBlock = internal::TensorBlock; using TensorBlockReader = internal::TensorBlockReader; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_shuffle(op.shufflePermutation()) { const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); const Shuffle& shuffle = op.shufflePermutation(); m_is_identity = true; for (int i = 0; i < NumDims; ++i) { m_dimensions[i] = input_dims[shuffle[i]]; m_inverseShuffle[shuffle[i]] = i; if (m_is_identity && shuffle[i] != i) { m_is_identity = false; } } if (static_cast(Layout) == static_cast(ColMajor)) { m_unshuffledInputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_unshuffledInputStrides[i] = m_unshuffledInputStrides[i - 1] * input_dims[i - 1]; m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; m_fastOutputStrides[i] = internal::TensorIntDivisor(m_outputStrides[i]); } } else { m_unshuffledInputStrides[NumDims - 1] = 1; m_outputStrides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_unshuffledInputStrides[i] = m_unshuffledInputStrides[i + 1] * input_dims[i + 1]; m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; m_fastOutputStrides[i] = internal::TensorIntDivisor(m_outputStrides[i]); } } for (int i = 0; i < NumDims; ++i) { m_inputStrides[i] = m_unshuffledInputStrides[shuffle[i]]; } m_block_total_size_max = numext::maxi(1, device.firstLevelCacheSize() / sizeof(Scalar)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { if (m_is_identity) { return m_impl.coeff(index); } else { return m_impl.coeff(srcCoeff(index)); } } template struct PacketLoader { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType Run(const Self& self, Index index) { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = self.coeff(index + i); } PacketReturnType rslt = internal::pload(values); return rslt; } }; template struct PacketLoader { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE static PacketReturnType Run(const Self& self, Index index) { if (self.m_is_identity) { return self.m_impl.template packet(index); } else { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = self.coeff(index + i); } PacketReturnType rslt = internal::pload(values); return rslt; } } }; template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index + PacketSize - 1 < dimensions().TotalSize()); return PacketLoader::PacketAccess>::Run(*this, index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( std::vector* resources) const { resources->push_back(internal::TensorOpResourceRequirements( internal::TensorBlockShapeType::kUniformAllDims, m_block_total_size_max)); m_impl.getResourceRequirements(resources); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void block( TensorBlock* output_block) const { if (m_impl.data() != NULL) { // Fast path: we have direct access to the data, so shuffle as we read. TensorBlockReader::Run(output_block, srcCoeff(output_block->first_coeff_index()), m_inverseShuffle, m_unshuffledInputStrides, m_impl.data()); return; } // Slow path: read unshuffled block from the input and shuffle in-place. // Initialize input block sizes using input-to-output shuffle map. DSizes input_block_sizes; for (Index i = 0; i < NumDims; ++i) { input_block_sizes[i] = output_block->block_sizes()[m_inverseShuffle[i]]; } // Calculate input block strides. DSizes input_block_strides; if (static_cast(Layout) == static_cast(ColMajor)) { input_block_strides[0] = 1; for (int i = 1; i < NumDims; ++i) { input_block_strides[i] = input_block_strides[i - 1] * input_block_sizes[i - 1]; } } else { input_block_strides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { input_block_strides[i] = input_block_strides[i + 1] * input_block_sizes[i + 1]; } } // Read input block. TensorBlock input_block(srcCoeff(output_block->first_coeff_index()), input_block_sizes, input_block_strides, Dimensions(m_unshuffledInputStrides), output_block->data()); m_impl.block(&input_block); // Naive In-place shuffle: random IO but block size is O(L1 cache size). // TODO(andydavis) Improve the performance of this in-place shuffle. const Index total_size = input_block_sizes.TotalSize(); std::vector bitmap(total_size, false); ScalarNoConst* data = const_cast(output_block->data()); const DSizes& output_block_strides = output_block->block_strides(); for (Index input_index = 0; input_index < total_size; ++input_index) { if (bitmap[input_index]) { // Coefficient at this index has already been shuffled. continue; } Index output_index = GetBlockOutputIndex(input_index, input_block_strides, output_block_strides); if (output_index == input_index) { // Coefficient already in place. bitmap[output_index] = true; continue; } // The following loop starts at 'input_index', and shuffles // coefficients into their shuffled location at 'output_index'. // It skips through the array shuffling coefficients by following // the shuffle cycle starting and ending a 'start_index'. ScalarNoConst evicted_value; ScalarNoConst shuffled_value = data[input_index]; do { evicted_value = data[output_index]; data[output_index] = shuffled_value; shuffled_value = evicted_value; bitmap[output_index] = true; output_index = GetBlockOutputIndex(output_index, input_block_strides, output_block_strides); } while (output_index != input_index); data[output_index] = shuffled_value; bitmap[output_index] = true; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = m_is_identity ? TensorOpCost::AddCost() : NumDims * (2 * TensorOpCost::AddCost() + 2 * TensorOpCost::MulCost() + TensorOpCost::DivCost()); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, m_is_identity /* vectorized */, PacketSize); } EIGEN_DEVICE_FUNC typename Eigen::internal::traits::PointerType data() const { return NULL; } // required by sycl EIGEN_STRONG_INLINE const Shuffle& shufflePermutation() const {return m_shuffle;} // required by sycl EIGEN_STRONG_INLINE const TensorEvaluator& impl() const {return m_impl;} protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index GetBlockOutputIndex( Index input_index, const DSizes& input_block_strides, const DSizes& output_block_strides) const { Index output_index = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = input_index / input_block_strides[i]; output_index += idx * output_block_strides[m_inverseShuffle[i]]; input_index -= idx * input_block_strides[i]; } return output_index + input_index * output_block_strides[m_inverseShuffle[0]]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = input_index / input_block_strides[i]; output_index += idx * output_block_strides[m_inverseShuffle[i]]; input_index -= idx * input_block_strides[i]; } return output_index + input_index * output_block_strides[m_inverseShuffle[NumDims - 1]]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[0]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[NumDims - 1]; } } Dimensions m_dimensions; bool m_is_identity; array m_inverseShuffle; array m_outputStrides; array, NumDims> m_fastOutputStrides; array m_inputStrides; array m_unshuffledInputStrides; Index m_block_total_size_max; TensorEvaluator m_impl; /// required by sycl Shuffle m_shuffle; }; // Eval as lvalue template struct TensorEvaluator, Device> : public TensorEvaluator, Device> { typedef TensorEvaluator, Device> Base; typedef TensorShufflingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; enum { IsAligned = false, PacketAccess = (PacketType::size > 1), BlockAccess = TensorEvaluator::BlockAccess, Layout = TensorEvaluator::Layout, RawAccess = false }; using ScalarNoConst = typename internal::remove_const::type; using TensorBlock = internal::TensorBlock; using TensorBlockWriter = internal::TensorBlockWriter; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; internal::pstore(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index+i) = values[i]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( const TensorBlock& block) { eigen_assert(this->m_impl.data() != NULL); TensorBlockWriter::Run(block, this->srcCoeff(block.first_coeff_index()), this->m_inverseShuffle, this->m_unshuffledInputStrides, this->m_impl.data()); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H