// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H namespace Eigen { namespace internal { #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) // Full reducers for GPU, don't vectorize for now // Reducer function that enables multiple cuda thread to safely accumulate at the same // output address. It basically reads the current value of the output variable, and // attempts to update it with the new value. If in the meantime another cuda thread // updated the content of the output address it will try again. template __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) { #if __CUDA_ARCH__ >= 300 if (sizeof(T) == 4) { unsigned int oldval = *reinterpret_cast(output); unsigned int newval = oldval; reducer.reduce(accum, reinterpret_cast(&newval)); if (newval == oldval) { return; } unsigned int readback; while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { oldval = readback; newval = oldval; reducer.reduce(accum, reinterpret_cast(&newval)); if (newval == oldval) { return; } } } else if (sizeof(T) == 8) { unsigned long long oldval = *reinterpret_cast(output); unsigned long long newval = oldval; reducer.reduce(accum, reinterpret_cast(&newval)); if (newval == oldval) { return; } unsigned long long readback; while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) { oldval = readback; newval = oldval; reducer.reduce(accum, reinterpret_cast(&newval)); if (newval == oldval) { return; } } } else { assert(0 && "Wordsize not supported"); } #else assert(0 && "Shouldn't be called on unsupported device"); #endif } template __device__ inline void atomicReduce(T* output, T accum, SumReducer&) { #if __CUDA_ARCH__ >= 300 atomicAdd(output, accum); #else assert(0 && "Shouldn't be called on unsupported device"); #endif } template __global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) { const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; const Index num_threads = blockDim.x * gridDim.x; for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = val; } } template __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs, typename Self::CoeffReturnType* output) { const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x; // Initialize the output value if it wasn't initialized by the ReductionInitKernel if (gridDim.x == 1 && first_index == 0) { *output = reducer.initialize(); } typename Self::CoeffReturnType accum = reducer.initialize(); Index max_iter = numext::mini(num_coeffs - first_index, NumPerThread*BlockSize); for (Index i = 0; i < max_iter; i+=BlockSize) { const Index index = first_index + i; eigen_assert(index < num_coeffs); typename Self::CoeffReturnType val = input.m_impl.coeff(index); reducer.reduce(val, &accum); } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reduce(__shfl_down(accum, offset), &accum); } if ((threadIdx.x & (warpSize - 1)) == 0) { atomicReduce(output, accum, reducer); } } template struct FullReducer { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple case // of floats. static const bool HasOptimizedImplementation = !Op::IsStateful && internal::is_same::value; template static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const GpuDevice&, OutputType*) { assert(false && "Should only be called on floats"); } static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) { typedef typename Self::Index Index; const Index num_coeffs = array_prod(self.m_impl.dimensions()); // Don't crash when we're called with an input tensor of size 0. if (num_coeffs == 0) { return; } const int block_size = 256; const int num_per_thread = 128; const int num_blocks = divup(num_coeffs, block_size * num_per_thread); if (num_blocks > 1) { // We initialize the outputs outside the reduction kernel when we can't be sure that there // won't be a race conditions between multiple thread blocks. LAUNCH_CUDA_KERNEL((ReductionInitKernel), 1, 32, 0, device, reducer.initialize(), 1, output); } LAUNCH_CUDA_KERNEL((FullReductionKernel), num_blocks, block_size, 0, device, reducer, self, num_coeffs, output); } }; template __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, typename Self::CoeffReturnType* output) { eigen_assert(blockDim.y == 1); eigen_assert(blockDim.z == 1); eigen_assert(gridDim.y == 1); eigen_assert(gridDim.z == 1); const int unroll_times = 16; eigen_assert(NumPerThread % unroll_times == 0); const Index input_col_blocks = divup(num_coeffs_to_reduce, blockDim.x * NumPerThread); const Index num_input_blocks = input_col_blocks * num_preserved_coeffs; const Index num_threads = blockDim.x * gridDim.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; // Initialize the output values if they weren't initialized by the ReductionInitKernel if (gridDim.x == 1) { for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = reducer.initialize(); } } for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { const Index row = i / input_col_blocks; if (row < num_preserved_coeffs) { const Index col_block = i % input_col_blocks; const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x; float reduced_val = reducer.initialize(); for (Index j = 0; j < NumPerThread; j += unroll_times) { const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1); if (last_col >= num_coeffs_to_reduce) { for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) { const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col); reducer.reduce(val, &reduced_val); } break; } else { // Faster version of the loop with no branches after unrolling. #pragma unroll for (int k = 0; k < unroll_times; ++k) { const Index col = col_begin + blockDim.x * (j + k); reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val); } } } #pragma unroll for (int offset = warpSize/2; offset > 0; offset /= 2) { reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val); } if ((threadIdx.x & (warpSize - 1)) == 0) { atomicReduce(&(output[row]), reduced_val, reducer); } } __syncthreads(); } } template struct InnerReducer { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple case // of floats. static const bool HasOptimizedImplementation = !Op::IsStateful && internal::is_same::value; template static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { assert(false && "Should only be called to reduce floats on a gpu device"); return true; } static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { typedef typename Self::Index Index; // It's faster to use the usual code. if (num_coeffs_to_reduce <= 32) { return true; } const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const int block_size = 256; const int num_per_thread = 128; const int dyn_blocks = divup(num_coeffs, block_size * num_per_thread); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const int num_blocks = numext::mini(max_blocks, dyn_blocks); if (num_blocks > 1) { // We initialize the outputs outside the reduction kernel when we can't be sure that there // won't be a race conditions between multiple thread blocks. const int dyn_blocks = divup(num_preserved_vals, 1024); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / 1024; const int num_blocks = numext::mini(max_blocks, dyn_blocks); LAUNCH_CUDA_KERNEL((ReductionInitKernel), num_blocks, 1024, 0, device, reducer.initialize(), num_preserved_vals, output); } LAUNCH_CUDA_KERNEL((InnerReductionKernel), num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); return false; } }; template __global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, typename Self::CoeffReturnType* output) { const Index num_threads = blockDim.x * gridDim.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; // Initialize the output values if they weren't initialized by the ReductionInitKernel if (gridDim.x == 1) { for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { output[i] = reducer.initialize(); } } // Do the reduction. const Index max_iter = num_preserved_coeffs * divup(num_coeffs_to_reduce, NumPerThread); for (Index i = thread_id; i < max_iter; i += num_threads) { const Index input_col = i % num_preserved_coeffs; const Index input_row = (i / num_preserved_coeffs) * NumPerThread; typename Self::CoeffReturnType reduced_val = reducer.initialize(); const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce); for (Index j = input_row; j < max_row; j++) { typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col); reducer.reduce(val, &reduced_val); } atomicReduce(&(output[input_col]), reduced_val, reducer); } } template struct OuterReducer { // Unfortunately nvidia doesn't support well exotic types such as complex, // so reduce the scope of the optimized version of the code to the simple case // of floats. static const bool HasOptimizedImplementation = !Op::IsStateful && internal::is_same::value; template static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { assert(false && "Should only be called to reduce floats on a gpu device"); return true; } static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { typedef typename Self::Index Index; // It's faster to use the usual code. if (num_coeffs_to_reduce <= 32) { return true; } const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const int block_size = 256; const int num_per_thread = 16; const int dyn_blocks = divup(num_coeffs, block_size * num_per_thread); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const int num_blocks = numext::mini(max_blocks, dyn_blocks); if (num_blocks > 1) { // We initialize the outputs in the reduction kernel itself when we don't have to worry // about race conditions between multiple thread blocks. const int dyn_blocks = divup(num_preserved_vals, 1024); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / 1024; const int num_blocks = numext::mini(max_blocks, dyn_blocks); LAUNCH_CUDA_KERNEL((ReductionInitKernel), num_blocks, 1024, 0, device, reducer.initialize(), num_preserved_vals, output); } LAUNCH_CUDA_KERNEL((OuterReductionKernel), num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); return false; } }; #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H