// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H namespace Eigen { /** \class TensorReduction * \ingroup CXX11_Tensor_Module * * \brief Tensor reduction class. * */ namespace internal { template struct traits > : traits { typedef typename traits::Scalar Scalar; typedef typename internal::packet_traits::type Packet; typedef typename traits::StorageKind StorageKind; typedef typename traits::Index Index; typedef typename XprType::Nested Nested; }; template struct eval, Eigen::Dense> { typedef const TensorReductionOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorReductionOp type; }; template struct DimInitializer { template EIGEN_DEVICE_FUNC static void run(const InputDims& input_dims, const array::value>& reduced, OutputDims* output_dims, ReducedDims* reduced_dims) { const int NumInputDims = internal::array_size::value; int outputIndex = 0; int reduceIndex = 0; for (int i = 0; i < NumInputDims; ++i) { if (reduced[i]) { (*reduced_dims)[reduceIndex] = input_dims[i]; ++reduceIndex; } else { (*output_dims)[outputIndex] = input_dims[i]; ++outputIndex; } } } }; template <> struct DimInitializer > { template EIGEN_DEVICE_FUNC static void run(const InputDims& input_dims, const array&, Sizes<>*, array* reduced_dims) { const int NumInputDims = internal::array_size::value; for (int i = 0; i < NumInputDims; ++i) { (*reduced_dims)[i] = input_dims[i]; } } }; template struct are_inner_most_dims { static const bool value = false; }; template struct preserve_inner_most_dims { static const bool value = false; }; #if defined(EIGEN_HAS_CONSTEXPR) && defined(EIGEN_HAS_VARIADIC_TEMPLATES) template struct are_inner_most_dims{ static const bool tmp1 = indices_statically_known_to_increase(); static const bool tmp2 = index_statically_eq(0, 0); static const bool tmp3 = index_statically_eq(array_size::value-1, array_size::value-1); static const bool value = tmp1 & tmp2 & tmp3; }; template struct are_inner_most_dims{ static const bool tmp1 = indices_statically_known_to_increase(); static const bool tmp2 = index_statically_eq(0, NumTensorDims - array_size::value); static const bool tmp3 = index_statically_eq(array_size::value - 1, NumTensorDims - 1); static const bool value = tmp1 & tmp2 & tmp3; }; template struct preserve_inner_most_dims{ static const bool tmp1 = indices_statically_known_to_increase(); static const bool tmp2 = index_statically_gt(0, 0); static const bool value = tmp1 & tmp2; }; template struct preserve_inner_most_dims{ static const bool tmp1 = indices_statically_known_to_increase(); static const bool tmp2 = index_statically_lt(array_size::value - 1, NumTensorDims - 1); static const bool value = tmp1 & tmp2; }; #endif template struct GenericDimReducer { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { EIGEN_STATIC_ASSERT(DimIndex > 0, YOU_MADE_A_PROGRAMMING_MISTAKE); for (int j = 0; j < self.m_reducedDims[DimIndex]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; GenericDimReducer::reduce(self, input, reducer, accum); } } }; template struct GenericDimReducer<0, Self, Op> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::CoeffReturnType* accum) { for (int j = 0; j < self.m_reducedDims[0]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; reducer.reduce(self.m_impl.coeff(input), accum); } } }; template struct GenericDimReducer<-1, Self, Op> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index index, Op& reducer, typename Self::CoeffReturnType* accum) { reducer.reduce(self.m_impl.coeff(index), accum); } }; template struct InnerMostDimReducer { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { typename Self::CoeffReturnType accum = reducer.initialize(); for (typename Self::Index j = 0; j < numValuesToReduce; ++j) { reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); } return reducer.finalize(accum); } }; template struct InnerMostDimReducer { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Self::CoeffReturnType reduce(const Self& self, typename Self::Index firstIndex, typename Self::Index numValuesToReduce, Op& reducer) { const int packetSize = internal::unpacket_traits::size; const typename Self::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize; typename Self::PacketReturnType p = reducer.template initializePacket(); for (typename Self::Index j = 0; j < VectorizedSize; j += packetSize) { reducer.reducePacket(self.m_impl.template packet(firstIndex + j), &p); } typename Self::CoeffReturnType accum = reducer.initialize(); for (typename Self::Index j = VectorizedSize; j < numValuesToReduce; ++j) { reducer.reduce(self.m_impl.coeff(firstIndex + j), &accum); } return reducer.finalizeBoth(accum, p); } }; template struct InnerMostDimPreserver { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { eigen_assert(false && "should never be called"); } }; template struct InnerMostDimPreserver { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { EIGEN_STATIC_ASSERT(DimIndex > 0, YOU_MADE_A_PROGRAMMING_MISTAKE); for (typename Self::Index j = 0; j < self.m_reducedDims[DimIndex]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[DimIndex]; InnerMostDimPreserver::reduce(self, input, reducer, accum); } } }; template struct InnerMostDimPreserver<0, Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self& self, typename Self::Index firstIndex, Op& reducer, typename Self::PacketReturnType* accum) { for (typename Self::Index j = 0; j < self.m_reducedDims[0]; ++j) { const typename Self::Index input = firstIndex + j * self.m_reducedStrides[0]; reducer.reducePacket(self.m_impl.template packet(input), accum); } } }; template struct InnerMostDimPreserver<-1, Self, Op, true> { static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const Self&, typename Self::Index, Op&, typename Self::PacketReturnType*) { eigen_assert(false && "should never be called"); } }; // Default full reducer template struct FullReducer { static const bool HasOptimizedImplementation = false; static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const Device&, typename Self::CoeffReturnType* output) { const typename Self::Index num_coeffs = array_prod(self.m_impl.dimensions()); *output = InnerMostDimReducer::reduce(self, 0, num_coeffs, reducer); } }; #ifdef EIGEN_USE_THREADS // Multithreaded full reducers template struct FullReducerShard { static void run(const Eval& eval, typename Eval::Index firstIndex, typename Eval::Index numValuesToReduce, Op& reducer, FullReducerShard* shard) { shard->saccum = reducer.initialize(); for (typename Eval::Index j = 0; j < numValuesToReduce; ++j) { reducer.reduce(eval.m_impl.coeff(firstIndex + j), &shard->saccum); } } typename Eval::CoeffReturnType saccum; }; template struct FullReducerShard { static void run(const Eval& eval, typename Eval::Index firstIndex, typename Eval::Index numValuesToReduce, Op& reducer, FullReducerShard* shard) { const int packetSize = internal::unpacket_traits::size; const typename Eval::Index VectorizedSize = (numValuesToReduce / packetSize) * packetSize; shard->paccum = reducer.template initializePacket(); for (typename Eval::Index j = 0; j < VectorizedSize; j += packetSize) { reducer.reducePacket(eval.m_impl.template packet(firstIndex + j), &shard->paccum); } shard->saccum = reducer.initialize(); for (typename Eval::Index j = VectorizedSize; j < numValuesToReduce; ++j) { reducer.reduce(eval.m_impl.coeff(firstIndex + j), &shard->saccum); } } typename Eval::PacketReturnType paccum; typename Eval::CoeffReturnType saccum; }; template struct FullReducer { static const bool HasOptimizedImplementation = !Op::IsStateful; // launch one reducer per thread and accumulate the result. static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, typename Self::CoeffReturnType* output) { typedef typename Self::Index Index; const Index num_coeffs = array_prod(self.m_impl.dimensions()); const Index blocksize = std::floor(static_cast(num_coeffs)/device.numThreads()); const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0; eigen_assert(num_coeffs >= numblocks * blocksize); std::vector results; results.reserve(numblocks); std::vector > shards; shards.resize(numblocks); for (Index i = 0; i < numblocks; ++i) { results.push_back(device.enqueue(&FullReducerShard::run, self, i*blocksize, blocksize, reducer, &shards[i])); } FullReducerShard finalShard; if (numblocks * blocksize < num_coeffs) { FullReducerShard::run(self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer, &finalShard); } else { finalShard.saccum = reducer.initialize(); } for (Index i = 0; i < numblocks; ++i) { wait_until_ready(results[i]); delete results[i]; } for (Index i = 0; i < numblocks; ++i) { reducer.reduce(shards[i].saccum, &finalShard.saccum); } *output = reducer.finalize(finalShard.saccum); } }; template struct FullReducer { static const bool HasOptimizedImplementation = !Op::IsStateful; // launch one reducer per thread and accumulate the result. static void run(const Self& self, Op& reducer, const ThreadPoolDevice& device, typename Self::CoeffReturnType* output) { typedef typename Self::Index Index; const Index num_coeffs = array_prod(self.m_impl.dimensions()); const Index blocksize = std::floor(static_cast(num_coeffs)/device.numThreads()); const Index numblocks = blocksize > 0 ? num_coeffs / blocksize : 0; eigen_assert(num_coeffs >= numblocks * blocksize); std::vector results; results.reserve(numblocks); std::vector > shards; shards.resize(numblocks); for (Index i = 0; i < numblocks; ++i) { results.push_back(device.enqueue(&FullReducerShard::run, self, i*blocksize, blocksize, reducer, &shards[i])); } FullReducerShard finalShard; if (numblocks * blocksize < num_coeffs) { FullReducerShard::run(self, numblocks * blocksize, num_coeffs - numblocks * blocksize, reducer, &finalShard); } else { finalShard.paccum = reducer.template initializePacket(); finalShard.saccum = reducer.initialize(); } for (Index i = 0; i < numblocks; ++i) { wait_until_ready(results[i]); delete results[i]; } for (Index i = 0; i < numblocks; ++i) { reducer.reducePacket(shards[i].paccum, &finalShard.paccum); reducer.reduce(shards[i].saccum, &finalShard.saccum); } *output = reducer.finalizeBoth(finalShard.saccum, finalShard.paccum); } }; #endif #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) template __global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*); #endif } // end namespace internal template class TensorReductionOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::internal::traits::Packet Packet; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename internal::remove_const::type CoeffReturnType; typedef typename internal::remove_const::type PacketReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReductionOp(const XprType& expr, const Dims& dims) : m_expr(expr), m_dims(dims) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReductionOp(const XprType& expr, const Dims& dims, const Op& reducer) : m_expr(expr), m_dims(dims), m_reducer(reducer) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& expression() const { return m_expr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dims& dims() const { return m_dims; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& reducer() const { return m_reducer; } protected: typename XprType::Nested m_expr; const Dims m_dims; const Op m_reducer; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorReductionOp XprType; typedef typename XprType::Index Index; typedef typename TensorEvaluator::Dimensions InputDimensions; static const int NumInputDims = internal::array_size::value; static const int NumReducedDims = internal::array_size::value; static const int NumOutputDims = NumInputDims - NumReducedDims; typedef typename internal::conditional, DSizes >::type Dimensions; typedef typename XprType::Scalar Scalar; typedef TensorEvaluator, Device> Self; static const bool InputPacketAccess = TensorEvaluator::PacketAccess; enum { IsAligned = false, PacketAccess = Self::InputPacketAccess && Op::PacketAccess, Layout = TensorEvaluator::Layout, CoordAccess = false, // to be implemented }; static const bool ReducingInnerMostDims = internal::are_inner_most_dims::value; static const bool PreservingInnerMostDims = internal::preserve_inner_most_dims::value; static const bool RunningFullReduction = (NumOutputDims==0); EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_reducer(op.reducer()), m_result(NULL), m_device(device) { EIGEN_STATIC_ASSERT(NumInputDims >= NumReducedDims, YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((!ReducingInnerMostDims | !PreservingInnerMostDims | (NumReducedDims == NumInputDims)), YOU_MADE_A_PROGRAMMING_MISTAKE); // Bitmap indicating if an input dimension is reduced or not. array reduced; for (int i = 0; i < NumInputDims; ++i) { reduced[i] = false; } for (int i = 0; i < NumReducedDims; ++i) { eigen_assert(op.dims()[i] >= 0); eigen_assert(op.dims()[i] < NumInputDims); reduced[op.dims()[i]] = true; } const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); internal::DimInitializer::run(input_dims, reduced, &m_dimensions, &m_reducedDims); // Precompute output strides. if (NumOutputDims > 0) { if (static_cast(Layout) == static_cast(ColMajor)) { m_outputStrides[0] = 1; for (int i = 1; i < NumOutputDims; ++i) { m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; } } else { m_outputStrides[NumOutputDims - 1] = 1; for (int i = NumOutputDims - 2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; } } } // Precompute input strides. if (NumInputDims > 0) { array input_strides; if (static_cast(Layout) == static_cast(ColMajor)) { input_strides[0] = 1; for (int i = 1; i < NumInputDims; ++i) { input_strides[i] = input_strides[i-1] * input_dims[i-1]; } } else { input_strides[NumInputDims - 1] = 1; for (int i = NumInputDims - 2; i >= 0; --i) { input_strides[i] = input_strides[i + 1] * input_dims[i + 1]; } } int outputIndex = 0; int reduceIndex = 0; for (int i = 0; i < NumInputDims; ++i) { if (reduced[i]) { m_reducedStrides[reduceIndex] = input_strides[i]; ++reduceIndex; } else { m_preservedStrides[outputIndex] = input_strides[i]; ++outputIndex; } } } // Special case for full reductions if (NumOutputDims == 0) { m_preservedStrides[0] = internal::array_prod(input_dims); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } typedef typename internal::remove_const::type CoeffReturnType; typedef typename internal::remove_const::type PacketReturnType; EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) { m_impl.evalSubExprsIfNeeded(NULL); // Use the FullReducer if possible. if (RunningFullReduction && internal::FullReducer::HasOptimizedImplementation && ((RunningOnGPU && (m_device.majorDeviceVersion() >= 3)) || (internal::array_prod(m_impl.dimensions()) > 1024 * 1024))) { bool need_assign = false; if (!data) { m_result = static_cast(m_device.allocate(sizeof(CoeffReturnType))); data = m_result; need_assign = true; } Op reducer(m_reducer); internal::FullReducer::run(*this, reducer, m_device, data); return need_assign; } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); if (m_result) { m_device.deallocate(m_result); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { if (RunningFullReduction && m_result) { return *m_result; } Op reducer(m_reducer); if (ReducingInnerMostDims || RunningFullReduction) { const Index num_values_to_reduce = (static_cast(Layout) == static_cast(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; return internal::InnerMostDimReducer::reduce(*this, firstInput(index), num_values_to_reduce, reducer); } else { typename Self::CoeffReturnType accum = reducer.initialize(); internal::GenericDimReducer::reduce(*this, firstInput(index), reducer, &accum); return reducer.finalize(accum); } } // TODO(bsteiner): provide a more efficient implementation. template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const int packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index + packetSize - 1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const::type values[packetSize]; if (ReducingInnerMostDims) { const Index num_values_to_reduce = (static_cast(Layout) == static_cast(ColMajor)) ? m_preservedStrides[0] : m_preservedStrides[NumPreservedStrides - 1]; const Index firstIndex = firstInput(index); for (Index i = 0; i < packetSize; ++i) { Op reducer(m_reducer); values[i] = internal::InnerMostDimReducer::reduce(*this, firstIndex + i * num_values_to_reduce, num_values_to_reduce, reducer); } } else if (PreservingInnerMostDims) { const Index firstIndex = firstInput(index); const int innermost_dim = (static_cast(Layout) == static_cast(ColMajor)) ? 0 : NumOutputDims - 1; // TBD: extend this the the n innermost dimensions that we preserve. if (((firstIndex % m_dimensions[innermost_dim]) + packetSize - 1) < m_dimensions[innermost_dim]) { Op reducer(m_reducer); typename Self::PacketReturnType accum = reducer.template initializePacket(); internal::InnerMostDimPreserver::reduce(*this, firstIndex, reducer, &accum); return reducer.finalizePacket(accum); } else { for (int i = 0; i < packetSize; ++i) { values[i] = coeff(index + i); } } } else { for (int i = 0; i < packetSize; ++i) { values[i] = coeff(index + i); } } PacketReturnType rslt = internal::pload(values); return rslt; } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } private: template friend struct internal::GenericDimReducer; template friend struct internal::InnerMostDimReducer; template friend struct internal::InnerMostDimPreserver; template friend struct internal::FullReducer; #ifdef EIGEN_USE_THREADS template friend struct internal::FullReducerShard; #endif #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) template friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*); #endif // Returns the Index in the input tensor of the first value that needs to be // used to compute the reduction at output index "index". EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { if (ReducingInnerMostDims) { if (static_cast(Layout) == static_cast(ColMajor)) { return index * m_preservedStrides[0]; } else { return index * m_preservedStrides[NumPreservedStrides - 1]; } } // TBD: optimize the case where we preserve the innermost dimensions. Index startInput = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumOutputDims - 1; i > 0; --i) { // This is index_i in the output tensor. const Index idx = index / m_outputStrides[i]; startInput += idx * m_preservedStrides[i]; index -= idx * m_outputStrides[i]; } if (PreservingInnerMostDims) { eigen_assert(m_preservedStrides[0] == 1); startInput += index; } else { startInput += index * m_preservedStrides[0]; } } else { for (int i = 0; i < NumOutputDims - 1; ++i) { // This is index_i in the output tensor. const Index idx = index / m_outputStrides[i]; startInput += idx * m_preservedStrides[i]; index -= idx * m_outputStrides[i]; } if (PreservingInnerMostDims) { eigen_assert(m_preservedStrides[NumPreservedStrides - 1] == 1); startInput += index; } else { startInput += index * m_preservedStrides[NumPreservedStrides - 1]; } } return startInput; } // Dimensions of the output of the operation. Dimensions m_dimensions; // Precomputed strides for the output tensor. array m_outputStrides; // Subset of strides of the input tensor for the non-reduced dimensions. // Indexed by output dimensions. static const int NumPreservedStrides = max_n_1::size; array m_preservedStrides; // Subset of strides of the input tensor for the reduced dimensions. // Indexed by reduced dimensions. array m_reducedStrides; // Size of the input dimensions that are reduced. // Indexed by reduced dimensions. array m_reducedDims; // Evaluator for the input expression. TensorEvaluator m_impl; // Operation to apply for computing the reduction. Op m_reducer; // For full reductions #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) static const bool RunningOnGPU = internal::is_same::value; #else static const bool RunningOnGPU = false; #endif CoeffReturnType* m_result; const Device& m_device; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H