// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_PADDING_H #define EIGEN_CXX11_TENSOR_TENSOR_PADDING_H namespace Eigen { /** \class TensorPadding * \ingroup CXX11_Tensor_Module * * \brief Tensor padding class. * At the moment only padding with a constant value is supported. * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; typedef typename XprTraits::PointerType PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorPaddingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorPaddingOp type; }; } // end namespace internal template class TensorPaddingOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPaddingOp(const XprType& expr, const PaddingDimensions& padding_dims, const Scalar padding_value) : m_xpr(expr), m_padding_dims(padding_dims), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC const PaddingDimensions& padding() const { return m_padding_dims; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const PaddingDimensions m_padding_dims; const Scalar m_padding_value; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorPaddingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; typedef StorageMemory Storage; typedef typename Storage::Type EvaluatorPointerType; enum { IsAligned = true, PacketAccess = TensorEvaluator::PacketAccess, BlockAccess = false, BlockAccessV2 = TensorEvaluator::RawAccess, PreferBlockAccess = true, Layout = TensorEvaluator::Layout, CoordAccess = true, RawAccess = false }; typedef typename internal::remove_const::type ScalarNoConst; //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// typedef internal::TensorBlockDescriptor TensorBlockDesc; typedef internal::TensorBlockScratchAllocator TensorBlockScratch; typedef typename internal::TensorMaterializedBlock TensorBlockV2; //===--------------------------------------------------------------------===// EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_padding(op.padding()), m_paddingValue(op.padding_value()), m_device(device) { // The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead // to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector // of 1 element first and then pad. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); // Compute dimensions m_dimensions = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] += m_padding[i].first + m_padding[i].second; } const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); if (static_cast(Layout) == static_cast(ColMajor)) { m_inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } m_outputStrides[NumDims] = m_outputStrides[NumDims-1] * m_dimensions[NumDims-1]; } else { m_inputStrides[NumDims - 1] = 1; m_outputStrides[NumDims] = 1; for (int i = NumDims - 2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_outputStrides[i+1] = m_outputStrides[i+2] * m_dimensions[i+1]; } m_outputStrides[0] = m_outputStrides[1] * m_dimensions[0]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { eigen_assert(index < dimensions().TotalSize()); Index inputIndex = 0; if (static_cast(Layout) == static_cast(ColMajor)) { EIGEN_UNROLL_LOOP for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } if (isPaddingAtIndexForDim(index, 0)) { return m_paddingValue; } inputIndex += (index - m_padding[0].first); } else { EIGEN_UNROLL_LOOP for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i+1]; if (isPaddingAtIndexForDim(idx, i)) { return m_paddingValue; } inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } if (isPaddingAtIndexForDim(index, NumDims-1)) { return m_paddingValue; } inputIndex += (index - m_padding[NumDims-1].first); } return m_impl.coeff(inputIndex); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { if (static_cast(Layout) == static_cast(ColMajor)) { return packetColMajor(index); } return packetRowMajor(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { TensorOpCost cost = m_impl.costPerCoeff(vectorized); if (static_cast(Layout) == static_cast(ColMajor)) { EIGEN_UNROLL_LOOP for (int i = 0; i < NumDims; ++i) updateCostPerDimension(cost, i, i == 0); } else { EIGEN_UNROLL_LOOP for (int i = NumDims - 1; i >= 0; --i) updateCostPerDimension(cost, i, i == NumDims - 1); } return cost; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( std::vector* resources) const { Eigen::Index block_total_size_max = numext::maxi( 1, m_device.lastLevelCacheSize() / sizeof(Scalar)); resources->push_back(internal::TensorOpResourceRequirements( internal::kSkewedInnerDims, block_total_size_max)); m_impl.getResourceRequirements(resources); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlockV2 blockV2(TensorBlockDesc& desc, TensorBlockScratch& scratch) const { // If one of the dimensions is zero, return empty block view. if (desc.size() == 0) { return TensorBlockV2(internal::TensorBlockKind::kView, NULL, desc.dimensions()); } // Check if we can reuse `desc` destination, or allocate new scratch buffer. ScalarNoConst* materialized_output = desc.template destination(); bool materialized_in_output; if (materialized_output != NULL) { desc.DropDestinationBuffer(); materialized_in_output = true; } else { const size_t materialized_output_size = desc.size() * sizeof(Scalar); void* output_scratch_mem = scratch.allocate(materialized_output_size); materialized_output = static_cast(output_scratch_mem); materialized_in_output = false; } static const bool IsColMajor = Layout == static_cast(ColMajor); Index offset = desc.offset(); // Compute offsets in the output tensor corresponding to the desc.offset(). DSizes output_offsets; for (int i = NumDims - 1; i > 0; --i) { const int dim = IsColMajor ? i : NumDims - i - 1; const int stride_dim = IsColMajor ? dim : dim + 1; output_offsets[dim] = offset / m_outputStrides[stride_dim]; offset -= output_offsets[dim] * m_outputStrides[stride_dim]; } output_offsets[IsColMajor ? 0 : NumDims - 1] = offset; // Offsets in the input corresponding to output offsets. DSizes input_offsets = output_offsets; for (int i = 0; i < NumDims; ++i) { const int dim = IsColMajor ? i : NumDims - i - 1; input_offsets[dim] = input_offsets[dim] - m_padding[dim].first; } // Compute offset in the input buffer (at this point it might be illegal and // point outside of the input buffer, because we don't check for negative // offsets, it will be autocorrected in the block iteration loop below). Index input_offset = 0; for (int i = 0; i < NumDims; ++i) { const int dim = IsColMajor ? i : NumDims - i - 1; input_offset += input_offsets[dim] * m_inputStrides[dim]; } // Destination buffer and scratch buffer both indexed from 0 and have the // same dimensions as the requested block (for destination buffer this // property is guaranteed by `desc.destination()`). Index output_offset = 0; const DSizes output_strides = internal::strides(desc.dimensions()); // NOTE(ezhulenev): We initialize bock iteration state for `NumDims - 1` // dimensions, skipping innermost dimension. In theory it should be possible // to squeeze matching innermost dimensions, however in practice that did // not show any improvements in benchmarks. Also in practice first outer // dimension usually has padding, and will prevent squeezing. // Initialize output block iterator state. Dimension in this array are // always in inner_most -> outer_most order (col major layout). array it; for (int i = 0; i < NumDims - 1; ++i) { const int dim = IsColMajor ? i + 1 : NumDims - i - 2; it[i].count = 0; it[i].size = desc.dimension(dim); it[i].input_stride = m_inputStrides[dim]; it[i].input_span = it[i].input_stride * (it[i].size - 1); it[i].output_stride = output_strides[dim]; it[i].output_span = it[i].output_stride * (it[i].size - 1); } const int inner_dim_idx = IsColMajor ? 0 : NumDims - 1; // Total output size. const Index output_size = desc.size(); // We will fill inner dimension of this size in the output. It might be // larger than the inner dimension in the input, so we might have to pad // before/after we copy values from the input inner dimension. const Index output_inner_dim_size = desc.dimension(inner_dim_idx); // How many values to fill with padding BEFORE reading from the input inner // dimension. const Index output_inner_pad_before_size = input_offsets[inner_dim_idx] < 0 ? numext::mini(numext::abs(input_offsets[inner_dim_idx]), output_inner_dim_size) : 0; // How many values we can actually copy from the input inner dimension. const Index output_inner_copy_size = numext::mini( // Want to copy from input. (output_inner_dim_size - output_inner_pad_before_size), // Can copy from input. numext::maxi( static_cast(m_impl.dimensions()[inner_dim_idx]) - (input_offsets[inner_dim_idx] + output_inner_pad_before_size), Index(0))); eigen_assert(output_inner_copy_size >= 0); // How many values to fill with padding AFTER reading from the input inner // dimension. const Index output_inner_pad_after_size = (output_inner_dim_size - output_inner_copy_size - output_inner_pad_before_size); // Sanity check, sum of all sizes must be equal to the output size. eigen_assert(output_inner_dim_size == (output_inner_pad_before_size + output_inner_copy_size + output_inner_pad_after_size)); // Keep track of current coordinates and padding in the output. DSizes output_coord = output_offsets; DSizes output_padded; for (int i = 0; i < NumDims; ++i) { const int dim = IsColMajor ? i : NumDims - i - 1; output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); } typedef internal::StridedLinearBufferCopy LinCopy; // Iterate copying data from `m_impl.data()` to the output buffer. for (Index size = 0; size < output_size; size += output_inner_dim_size) { // Detect if we are in the padded region (exclude innermost dimension). bool is_padded = false; for (int j = 1; j < NumDims; ++j) { const int dim = IsColMajor ? j : NumDims - j - 1; is_padded = output_padded[dim]; if (is_padded) break; } if (is_padded) { // Fill with padding value. LinCopy::template Run( typename LinCopy::Dst(output_offset, 1, materialized_output), typename LinCopy::Src(0, 0, &m_paddingValue), output_inner_dim_size); } else { { // Fill with padding before copying from input inner dimension. const Index out = output_offset; LinCopy::template Run( typename LinCopy::Dst(out, 1, materialized_output), typename LinCopy::Src(0, 0, &m_paddingValue), output_inner_pad_before_size); } { // Copy data from input inner dimension. const Index out = output_offset + output_inner_pad_before_size; const Index in = input_offset + output_inner_pad_before_size; eigen_assert(output_inner_copy_size == 0 || m_impl.data() != NULL); LinCopy::template Run( typename LinCopy::Dst(out, 1, materialized_output), typename LinCopy::Src(in, 1, m_impl.data()), output_inner_copy_size); } { // Fill with padding after copying from input inner dimension. const Index out = output_offset + output_inner_pad_before_size + output_inner_copy_size; LinCopy::template Run( typename LinCopy::Dst(out, 1, materialized_output), typename LinCopy::Src(0, 0, &m_paddingValue), output_inner_pad_after_size); } } for (int j = 0; j < NumDims - 1; ++j) { const int dim = IsColMajor ? j + 1 : NumDims - j - 2; if (++it[j].count < it[j].size) { input_offset += it[j].input_stride; output_offset += it[j].output_stride; output_coord[dim] += 1; output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); break; } it[j].count = 0; input_offset -= it[j].input_span; output_offset -= it[j].output_span; output_coord[dim] -= it[j].size - 1; output_padded[dim] = isPaddingAtIndexForDim(output_coord[dim], dim); } } return TensorBlockV2(materialized_in_output ? internal::TensorBlockKind::kMaterializedInOutput : internal::TensorBlockKind::kMaterializedInScratch, materialized_output, desc.dimensions()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; } #ifdef EIGEN_USE_SYCL // binding placeholder accessors to a command group handler for SYCL EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { m_impl.bind(cgh); } #endif private: struct BlockIteratorState { BlockIteratorState() : count(0), size(0), input_stride(0), input_span(0), output_stride(0), output_span(0) {} Index count; Index size; Index input_stride; Index input_span; Index output_stride; Index output_span; }; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isPaddingAtIndexForDim( Index index, int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return (!internal::index_pair_first_statically_eq(dim_index, 0) && index < m_padding[dim_index].first) || (!internal::index_pair_second_statically_eq(dim_index, 0) && index >= m_dimensions[dim_index] - m_padding[dim_index].second); #else return (index < m_padding[dim_index].first) || (index >= m_dimensions[dim_index] - m_padding[dim_index].second); #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isLeftPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_first_statically_eq(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool isRightPaddingCompileTimeZero( int dim_index) const { #if defined(EIGEN_HAS_INDEX_LIST) return internal::index_pair_second_statically_eq(dim_index, 0); #else EIGEN_UNUSED_VARIABLE(dim_index); return false; #endif } void updateCostPerDimension(TensorOpCost& cost, int i, bool first) const { const double in = static_cast(m_impl.dimensions()[i]); const double out = in + m_padding[i].first + m_padding[i].second; if (out == 0) return; const double reduction = in / out; cost *= reduction; if (first) { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost() + reduction * (1 * TensorOpCost::AddCost())); } else { cost += TensorOpCost(0, 0, 2 * TensorOpCost::AddCost() + 2 * TensorOpCost::MulCost() + reduction * (2 * TensorOpCost::MulCost() + 1 * TensorOpCost::DivCost())); } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; EIGEN_UNROLL_LOOP for (int i = NumDims - 1; i > 0; --i) { const Index firstIdx = index; const Index lastIdx = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i]; const Index lastPaddedRight = m_outputStrides[i+1]; if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index lastIdx = index + PacketSize - 1; const Index firstIdx = index; const Index lastPaddedLeft = m_padding[0].first; const Index firstPaddedRight = (m_dimensions[0] - m_padding[0].second); const Index lastPaddedRight = m_outputStrides[1]; if (!isLeftPaddingCompileTimeZero(0) && lastIdx < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(0) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(0) && isRightPaddingCompileTimeZero(0)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[0].first); return m_impl.template packet(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index initialIndex = index; Index inputIndex = 0; EIGEN_UNROLL_LOOP for (int i = 0; i < NumDims - 1; ++i) { const Index firstIdx = index; const Index lastIdx = index + PacketSize - 1; const Index lastPaddedLeft = m_padding[i].first * m_outputStrides[i+1]; const Index firstPaddedRight = (m_dimensions[i] - m_padding[i].second) * m_outputStrides[i+1]; const Index lastPaddedRight = m_outputStrides[i]; if (!isLeftPaddingCompileTimeZero(i) && lastIdx < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(i) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(i) && isRightPaddingCompileTimeZero(i)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. const Index idx = index / m_outputStrides[i+1]; inputIndex += (idx - m_padding[i].first) * m_inputStrides[i]; index -= idx * m_outputStrides[i+1]; } else { // Every other case return packetWithPossibleZero(initialIndex); } } const Index lastIdx = index + PacketSize - 1; const Index firstIdx = index; const Index lastPaddedLeft = m_padding[NumDims-1].first; const Index firstPaddedRight = (m_dimensions[NumDims-1] - m_padding[NumDims-1].second); const Index lastPaddedRight = m_outputStrides[NumDims-1]; if (!isLeftPaddingCompileTimeZero(NumDims-1) && lastIdx < lastPaddedLeft) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if (!isRightPaddingCompileTimeZero(NumDims-1) && firstIdx >= firstPaddedRight && lastIdx < lastPaddedRight) { // all the coefficient are in the padding zone. return internal::pset1(m_paddingValue); } else if ((isLeftPaddingCompileTimeZero(NumDims-1) && isRightPaddingCompileTimeZero(NumDims-1)) || (firstIdx >= lastPaddedLeft && lastIdx < firstPaddedRight)) { // all the coefficient are between the 2 padding zones. inputIndex += (index - m_padding[NumDims-1].first); return m_impl.template packet(inputIndex); } // Every other case return packetWithPossibleZero(initialIndex); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; EIGEN_UNROLL_LOOP for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } Dimensions m_dimensions; array m_outputStrides; array m_inputStrides; TensorEvaluator m_impl; PaddingDimensions m_padding; Scalar m_paddingValue; const Device EIGEN_DEVICE_REF m_device; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_PADDING_H