// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H #define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H namespace Eigen { /** \class TensorReshaping * \ingroup CXX11_Tensor_Module * * \brief Tensor reshaping class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef typename internal::packet_traits::type Packet; typedef typename traits::StorageKind StorageKind; typedef typename traits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; }; template struct eval, Eigen::Dense> { typedef const TensorReshapingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorReshapingOp type; }; } // end namespace internal template class TensorReshapingOp : public TensorBase, WriteAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::internal::traits::Packet Packet; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims) : m_xpr(expr), m_dims(dims) {} EIGEN_DEVICE_FUNC const NewDimensions& dimensions() const { return m_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const NewDimensions m_dims; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorReshapingOp XprType; typedef NewDimensions Dimensions; enum { IsAligned = TensorEvaluator::IsAligned, PacketAccess = TensorEvaluator::PacketAccess, }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_dimensions(op.dimensions()) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { return m_impl.evalSubExprsIfNeeded(data); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(index); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { return m_impl.template packet(index); } Scalar* data() const { return m_impl.data(); } protected: TensorEvaluator m_impl; NewDimensions m_dimensions; }; // Eval as lvalue template struct TensorEvaluator, Device> : public TensorEvaluator, Device> { typedef TensorEvaluator, Device> Base; typedef TensorReshapingOp XprType; typedef NewDimensions Dimensions; enum { IsAligned = TensorEvaluator::IsAligned, PacketAccess = TensorEvaluator::PacketAccess, }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(index); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { this->m_impl.template writePacket(index, x); } }; /** \class TensorSlicing * \ingroup CXX11_Tensor_Module * * \brief Tensor slicing class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef typename internal::packet_traits::type Packet; typedef typename traits::StorageKind StorageKind; typedef typename traits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; }; template struct eval, Eigen::Dense> { typedef const TensorSlicingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorSlicingOp type; }; } // end namespace internal template class TensorSlicingOp : public TensorBase > { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::internal::traits::Packet Packet; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes) : m_xpr(expr), m_indices(indices), m_sizes(sizes) {} EIGEN_DEVICE_FUNC const StartIndices& startIndices() const { return m_indices; } EIGEN_DEVICE_FUNC const Sizes& sizes() const { return m_sizes; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const StartIndices m_indices; const Sizes m_sizes; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorSlicingOp XprType; static const int NumDims = internal::array_size::value; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets and sizes. IsAligned = /*TensorEvaluator::IsAligned*/false, PacketAccess = TensorEvaluator::PacketAccess, }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices()) { for (int i = 0; i < internal::array_size::value; ++i) { eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]); } const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); for (int i = 0; i < NumDims; ++i) { if (i > 0) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; } else { m_inputStrides[0] = 1; } } const Sizes& output_dims = op.sizes(); for (int i = 0; i < NumDims; ++i) { if (i > 0) { m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1]; m_fastOutputStrides[i] = internal::TensorIntDivisor(m_outputStrides[i]); } else { m_outputStrides[0] = 1; m_fastOutputStrides[0] = 1; } } } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; typedef Sizes Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { m_impl.evalSubExprsIfNeeded(NULL); if (internal::is_arithmetic::value && data && m_impl.data()) { Index contiguous_values = 1; for (int i = 0; i < NumDims; ++i) { contiguous_values *= dimensions()[i]; if (dimensions()[i] != m_impl.dimensions()[i]) { break; } } // Use memcpy if it's going to be faster than using the regular evaluation. if (contiguous_values > 2 * m_device.numThreads()) { Scalar* src = m_impl.data(); for (int i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) { Index offset = srcCoeff(i); m_device.memcpy((void*)(data+i), src+offset, contiguous_values * sizeof(Scalar)); } return false; } } return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const int packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+packetSize-1 < dimensions().TotalSize()); Index inputIndices[] = {0, 0}; Index indices[] = {index, index + packetSize - 1}; for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / m_fastOutputStrides[i]; const Index idx1 = indices[1] / m_fastOutputStrides[i]; inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i]; inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i]; indices[0] -= idx0 * m_outputStrides[i]; indices[1] -= idx1 * m_outputStrides[i]; } inputIndices[0] += (indices[0] + m_offsets[0]); inputIndices[1] += (indices[1] + m_offsets[0]); if (inputIndices[1] - inputIndices[0] == packetSize - 1) { PacketReturnType rslt = m_impl.template packet(inputIndices[0]); return rslt; } else { typename internal::remove_const::type values[packetSize]; values[0] = m_impl.coeff(inputIndices[0]); values[packetSize-1] = m_impl.coeff(inputIndices[1]); for (int i = 1; i < packetSize-1; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { Scalar* result = m_impl.data(); if (result) { Index offset = 0; for (int i = 0; i < NumDims; ++i) { if (m_dimensions[i] != m_impl.dimensions()[i]) { offset += m_offsets[i] * m_inputStrides[i]; for (int j = i+1; j < NumDims; ++j) { if (m_dimensions[j] > 1) { return NULL; } offset += m_offsets[j] * m_inputStrides[j]; } break; } } return result + offset; } return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_fastOutputStrides[i]; inputIndex += (idx + m_offsets[i]) * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } inputIndex += (index + m_offsets[0]); return inputIndex; } array m_outputStrides; array, NumDims> m_fastOutputStrides; array m_inputStrides; TensorEvaluator m_impl; const Device& m_device; Dimensions m_dimensions; const StartIndices m_offsets; }; // Eval as lvalue template struct TensorEvaluator, Device> : public TensorEvaluator, Device> { typedef TensorEvaluator, Device> Base; typedef TensorSlicingOp XprType; static const int NumDims = internal::array_size::value; enum { IsAligned = /*TensorEvaluator::IsAligned*/false, PacketAccess = TensorEvaluator::PacketAccess, }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; typedef Sizes Dimensions; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { const int packetSize = internal::unpacket_traits::size; Index inputIndices[] = {0, 0}; Index indices[] = {index, index + packetSize - 1}; for (int i = NumDims - 1; i > 0; --i) { const Index idx0 = indices[0] / this->m_fastOutputStrides[i]; const Index idx1 = indices[1] / this->m_fastOutputStrides[i]; inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i]; inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i]; indices[0] -= idx0 * this->m_outputStrides[i]; indices[1] -= idx1 * this->m_outputStrides[i]; } inputIndices[0] += (indices[0] + this->m_offsets[0]); inputIndices[1] += (indices[1] + this->m_offsets[0]); if (inputIndices[1] - inputIndices[0] == packetSize - 1) { this->m_impl.template writePacket(inputIndices[0], x); } else { EIGEN_ALIGN_DEFAULT CoeffReturnType values[packetSize]; internal::pstore(values, x); this->m_impl.coeffRef(inputIndices[0]) = values[0]; this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1]; for (int i = 1; i < packetSize-1; ++i) { this->coeffRef(index+i) = values[i]; } } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H