// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H #define EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H namespace Eigen { /** \internal * * \class TensorIntDiv * \ingroup CXX11_Tensor_Module * * \brief Fast integer division by a constant. * * See the paper from Granlund and Montgomery for explanation. * (at http://dx.doi.org/10.1145/773473.178249) * * \sa Tensor */ namespace internal { namespace { // Note: result is undefined if val == 0 template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int count_leading_zeros(const T val) { #ifdef __CUDA_ARCH__ return __clz(val); #elif EIGEN_COMP_MSVC DWORD leading_zero = 0; _BitScanReverse( &leading_zero, value); return 31 - leading_zero; #else return __builtin_clz(static_cast(val)); #endif } } template struct TensorIntDivisor { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { multiplier = 0; shift1 = 0; shift2 = 0; } // Must have 1 <= divider <= 2^31-1 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor(const T divider) { const int N = 32; eigen_assert(divider > 0); eigen_assert(divider <= (1U<<(N-1)) - 1); // fast ln2 const int leading_zeros = count_leading_zeros(divider); const int log_div = N - (leading_zeros+1); multiplier = (static_cast(1) << (N+log_div)) / divider - (static_cast(1) << N) + 1; shift1 = log_div > 1 ? 1 : log_div; shift2 = log_div > 1 ? log_div-1 : 0; } // Must have 0 <= numerator <= 2^32-1 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T divide(const T numerator) const { const int N = 32; eigen_assert(numerator >= 0); eigen_assert(static_cast(numerator) <= (1ull<> N; uint32_t t = (static_cast(numerator) - t1) >> shift1; return (t1 + t) >> shift2; } private: uint64_t multiplier; int32_t shift1; int32_t shift2; }; // Optimized version for signed 32 bit integers. // Derived from Hacker's Delight. template <> class TensorIntDivisor { public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIntDivisor() { magic = 0; shift = 0; } // Must have 2 <= divider EIGEN_DEVICE_FUNC TensorIntDivisor(int divider) { eigen_assert(divider >= 2); calcMagic(divider); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE int divide(const int n) const { #ifdef __CUDA_ARCH__ return (__umulhi(magic, n) >> shift); #else uint64_t v = static_cast(magic) * static_cast(n); return (static_cast(v >> 32) >> shift); #endif } private: // Compute the magic numbers. See Hacker's Delight section 10 for an in // depth explanation. EIGEN_DEVICE_FUNC void calcMagic(int d) { const unsigned two31 = 0x80000000; // 2**31. unsigned ad = d; unsigned t = two31 + (ad >> 31); unsigned anc = t - 1 - t%ad; // Absolute value of nc. int p = 31; // Init. p. unsigned q1 = two31/anc; // Init. q1 = 2**p/|nc|. unsigned r1 = two31 - q1*anc; // Init. r1 = rem(2**p, |nc|). unsigned q2 = two31/ad; // Init. q2 = 2**p/|d|. unsigned r2 = two31 - q2*ad; // Init. r2 = rem(2**p, |d|). unsigned delta = 0; do { p = p + 1; q1 = 2*q1; // Update q1 = 2**p/|nc|. r1 = 2*r1; // Update r1 = rem(2**p, |nc|). if (r1 >= anc) { // (Must be an unsigned q1 = q1 + 1; // comparison here). r1 = r1 - anc;} q2 = 2*q2; // Update q2 = 2**p/|d|. r2 = 2*r2; // Update r2 = rem(2**p, |d|). if (r2 >= ad) { // (Must be an unsigned q2 = q2 + 1; // comparison here). r2 = r2 - ad;} delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); magic = (unsigned)(q2 + 1); shift = p - 32; } unsigned int magic; int shift; }; template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator / (const T& numerator, const TensorIntDivisor& divisor) { return divisor.divide(numerator); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_INTDIV_H