// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H namespace Eigen { /** \class TensorImagePatch * \ingroup CXX11_Tensor_Module * * \brief Patch extraction specialized for image processing. * This assumes that the input has a least 3 dimensions ordered as follow: * 1st dimension: channels (of size d) * 2nd dimension: rows (of size r) * 3rd dimension: columns (of size c) * There can be additional dimensions such as time (for video) or batch (for * bulk processing after the first 3. * Calling the image patch code with patch_rows and patch_cols is equivalent * to calling the regular patch extraction code with parameters d, patch_rows, * patch_cols, and 1 for all the additional dimensions. */ namespace internal { template struct traits > : public traits { typedef typename internal::remove_const::type Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; typedef typename XprTraits::PointerType PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorImagePatchOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorImagePatchOp type; }; template struct ImagePatchCopyOp { typedef typename Self::Index Index; typedef typename Self::Scalar Scalar; typedef typename Self::Impl Impl; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( const Self& self, const Index num_coeff_to_copy, const Index dst_index, Scalar* dst_data, const Index src_index) { const Impl& impl = self.impl(); for (Index i = 0; i < num_coeff_to_copy; ++i) { dst_data[dst_index + i] = impl.coeff(src_index + i); } } }; template struct ImagePatchCopyOp { typedef typename Self::Index Index; typedef typename Self::Scalar Scalar; typedef typename Self::Impl Impl; typedef typename packet_traits::type Packet; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( const Self& self, const Index num_coeff_to_copy, const Index dst_index, Scalar* dst_data, const Index src_index) { const Impl& impl = self.impl(); const Index packet_size = internal::unpacket_traits::size; const Index vectorized_size = (num_coeff_to_copy / packet_size) * packet_size; for (Index i = 0; i < vectorized_size; i += packet_size) { Packet p = impl.template packet(src_index + i); internal::pstoret(dst_data + dst_index + i, p); } for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) { dst_data[dst_index + i] = impl.coeff(src_index + i); } } }; template struct ImagePatchPaddingOp { typedef typename Self::Index Index; typedef typename Self::Scalar Scalar; typedef typename packet_traits::type Packet; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run( const Index num_coeff_to_pad, const Scalar padding_value, const Index dst_index, Scalar* dst_data) { const Index packet_size = internal::unpacket_traits::size; const Packet padded_packet = internal::pset1(padding_value); const Index vectorized_size = (num_coeff_to_pad / packet_size) * packet_size; for (Index i = 0; i < vectorized_size; i += packet_size) { internal::pstoret(dst_data + dst_index + i, padded_packet); } for (Index i = vectorized_size; i < num_coeff_to_pad; ++i) { dst_data[dst_index + i] = padding_value; } } }; } // end namespace internal template class TensorImagePatchOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(false), m_padding_top(0), m_padding_bottom(0), m_padding_left(0), m_padding_right(0), m_padding_type(padding_type), m_padding_value(padding_value) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(true), m_padding_top(padding_top), m_padding_bottom(padding_bottom), m_padding_left(padding_left), m_padding_right(padding_right), m_padding_type(PADDING_VALID), m_padding_value(padding_value) {} #ifdef EIGEN_USE_SYCL // this is work around for sycl as Eigen could not use c++11 deligate constructor feature EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, bool padding_explicit, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, PaddingType padding_type, Scalar padding_value) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_in_row_strides(in_row_strides), m_in_col_strides(in_col_strides), m_row_inflate_strides(row_inflate_strides), m_col_inflate_strides(col_inflate_strides), m_padding_explicit(padding_explicit), m_padding_top(padding_top), m_padding_bottom(padding_bottom), m_padding_left(padding_left), m_padding_right(padding_right), m_padding_type(padding_type), m_padding_value(padding_value) {} #endif EIGEN_DEVICE_FUNC DenseIndex patch_rows() const { return m_patch_rows; } EIGEN_DEVICE_FUNC DenseIndex patch_cols() const { return m_patch_cols; } EIGEN_DEVICE_FUNC DenseIndex row_strides() const { return m_row_strides; } EIGEN_DEVICE_FUNC DenseIndex col_strides() const { return m_col_strides; } EIGEN_DEVICE_FUNC DenseIndex in_row_strides() const { return m_in_row_strides; } EIGEN_DEVICE_FUNC DenseIndex in_col_strides() const { return m_in_col_strides; } EIGEN_DEVICE_FUNC DenseIndex row_inflate_strides() const { return m_row_inflate_strides; } EIGEN_DEVICE_FUNC DenseIndex col_inflate_strides() const { return m_col_inflate_strides; } EIGEN_DEVICE_FUNC bool padding_explicit() const { return m_padding_explicit; } EIGEN_DEVICE_FUNC DenseIndex padding_top() const { return m_padding_top; } EIGEN_DEVICE_FUNC DenseIndex padding_bottom() const { return m_padding_bottom; } EIGEN_DEVICE_FUNC DenseIndex padding_left() const { return m_padding_left; } EIGEN_DEVICE_FUNC DenseIndex padding_right() const { return m_padding_right; } EIGEN_DEVICE_FUNC PaddingType padding_type() const { return m_padding_type; } EIGEN_DEVICE_FUNC Scalar padding_value() const { return m_padding_value; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const DenseIndex m_patch_rows; const DenseIndex m_patch_cols; const DenseIndex m_row_strides; const DenseIndex m_col_strides; const DenseIndex m_in_row_strides; const DenseIndex m_in_col_strides; const DenseIndex m_row_inflate_strides; const DenseIndex m_col_inflate_strides; const bool m_padding_explicit; const DenseIndex m_padding_top; const DenseIndex m_padding_bottom; const DenseIndex m_padding_left; const DenseIndex m_padding_right; const PaddingType m_padding_type; const Scalar m_padding_value; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorImagePatchOp XprType; typedef typename XprType::Index Index; static const int NumInputDims = internal::array_size::Dimensions>::value; static const int NumDims = NumInputDims + 1; typedef DSizes Dimensions; typedef typename internal::remove_const::type Scalar; typedef TensorEvaluator, Device> Self; typedef TensorEvaluator Impl; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; enum { IsAligned = false, PacketAccess = TensorEvaluator::PacketAccess, BlockAccess = true, PreferBlockAccess = true, Layout = TensorEvaluator::Layout, CoordAccess = false, RawAccess = false }; typedef internal::TensorBlock OutputTensorBlock; #ifdef __SYCL_DEVICE_ONLY__ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator( const XprType op, const Device& device) #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator( const XprType& op, const Device& device) #endif : m_device(device), m_impl(op.expression(), device) #ifdef EIGEN_USE_SYCL , m_op(op) #endif { EIGEN_STATIC_ASSERT((NumDims >= 4), YOU_MADE_A_PROGRAMMING_MISTAKE); m_paddingValue = op.padding_value(); const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); // Caches a few variables. if (static_cast(Layout) == static_cast(ColMajor)) { m_inputDepth = input_dims[0]; m_inputRows = input_dims[1]; m_inputCols = input_dims[2]; } else { m_inputDepth = input_dims[NumInputDims-1]; m_inputRows = input_dims[NumInputDims-2]; m_inputCols = input_dims[NumInputDims-3]; } m_row_strides = op.row_strides(); m_col_strides = op.col_strides(); // Input strides and effective input/patch size m_in_row_strides = op.in_row_strides(); m_in_col_strides = op.in_col_strides(); m_row_inflate_strides = op.row_inflate_strides(); m_col_inflate_strides = op.col_inflate_strides(); // The "effective" input rows and input cols are the input rows and cols // after inflating them with zeros. // For examples, a 2x3 matrix with row_inflate_strides and // col_inflate_strides of 2 comes from: // A B C // D E F // // to a matrix is 3 x 5: // // A . B . C // . . . . . // D . E . F m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1; m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1; m_patch_rows_eff = op.patch_rows() + (op.patch_rows() - 1) * (m_in_row_strides - 1); m_patch_cols_eff = op.patch_cols() + (op.patch_cols() - 1) * (m_in_col_strides - 1); if (op.padding_explicit()) { m_outputRows = numext::ceil((m_input_rows_eff + op.padding_top() + op.padding_bottom() - m_patch_rows_eff + 1.f) / static_cast(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff + op.padding_left() + op.padding_right() - m_patch_cols_eff + 1.f) / static_cast(m_col_strides)); m_rowPaddingTop = op.padding_top(); m_colPaddingLeft = op.padding_left(); } else { // Computing padding from the type switch (op.padding_type()) { case PADDING_VALID: m_outputRows = numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) / static_cast(m_row_strides)); m_outputCols = numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) / static_cast(m_col_strides)); // Calculate the padding m_rowPaddingTop = numext::maxi(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2); m_colPaddingLeft = numext::maxi(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2); break; case PADDING_SAME: m_outputRows = numext::ceil(m_input_rows_eff / static_cast(m_row_strides)); m_outputCols = numext::ceil(m_input_cols_eff / static_cast(m_col_strides)); // Calculate the padding m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2; m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2; // The padding size calculation for PADDING_SAME has been updated to // be consistent with how TensorFlow extracts its paddings. m_rowPaddingTop = numext::maxi(0, m_rowPaddingTop); m_colPaddingLeft = numext::maxi(0, m_colPaddingLeft); break; default: eigen_assert(false && "unexpected padding"); m_outputCols=0; // silence the uninitialised warning; m_outputRows=0; //// silence the uninitialised warning; } } eigen_assert(m_outputRows > 0); eigen_assert(m_outputCols > 0); // Dimensions for result of extraction. if (static_cast(Layout) == static_cast(ColMajor)) { // ColMajor // 0: depth // 1: patch_rows // 2: patch_cols // 3: number of patches // 4 and beyond: anything else (such as batch). m_dimensions[0] = input_dims[0]; m_dimensions[1] = op.patch_rows(); m_dimensions[2] = op.patch_cols(); m_dimensions[3] = m_outputRows * m_outputCols; for (int i = 4; i < NumDims; ++i) { m_dimensions[i] = input_dims[i-1]; } } else { // RowMajor // NumDims-1: depth // NumDims-2: patch_rows // NumDims-3: patch_cols // NumDims-4: number of patches // NumDims-5 and beyond: anything else (such as batch). m_dimensions[NumDims-1] = input_dims[NumInputDims-1]; m_dimensions[NumDims-2] = op.patch_rows(); m_dimensions[NumDims-3] = op.patch_cols(); m_dimensions[NumDims-4] = m_outputRows * m_outputCols; for (int i = NumDims-5; i >= 0; --i) { m_dimensions[i] = input_dims[i]; } } // Strides for moving the patch in various dimensions. if (static_cast(Layout) == static_cast(ColMajor)) { m_colStride = m_dimensions[1]; m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0]; m_otherStride = m_patchStride * m_dimensions[3]; } else { m_colStride = m_dimensions[NumDims-2]; m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1]; m_otherStride = m_patchStride * m_dimensions[NumDims-4]; } // Strides for navigating through the input tensor. m_rowInputStride = m_inputDepth; m_colInputStride = m_inputDepth * m_inputRows; m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols; // Fast representations of different variables. m_fastOtherStride = internal::TensorIntDivisor(m_otherStride); m_fastPatchStride = internal::TensorIntDivisor(m_patchStride); m_fastColStride = internal::TensorIntDivisor(m_colStride); m_fastInflateRowStride = internal::TensorIntDivisor(m_row_inflate_strides); m_fastInflateColStride = internal::TensorIntDivisor(m_col_inflate_strides); m_fastInputColsEff = internal::TensorIntDivisor(m_input_cols_eff); // Number of patches in the width dimension. m_fastOutputRows = internal::TensorIntDivisor(m_outputRows); if (static_cast(Layout) == static_cast(ColMajor)) { m_fastOutputDepth = internal::TensorIntDivisor(m_dimensions[0]); } else { m_fastOutputDepth = internal::TensorIntDivisor(m_dimensions[NumDims-1]); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { // Patch index corresponding to the passed in index. const Index patchIndex = index / m_fastPatchStride; // Find the offset of the element wrt the location of the first element. const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth; // Other ways to index this element. const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; // Calculate col index in the input original tensor. const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffset = patchOffset / m_fastColStride; const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft; const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0); if (inputCol < 0 || inputCol >= m_input_cols_eff || ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { return Scalar(m_paddingValue); } // Calculate row index in the original input tensor. const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffset = patchOffset - colOffset * m_colStride; const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop; const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0); if (inputRow < 0 || inputRow >= m_input_rows_eff || ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { return Scalar(m_paddingValue); } const int depth_index = static_cast(Layout) == static_cast(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.coeff(inputIndex); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) { return packetWithPossibleZero(index); } const Index indices[2] = {index, index + PacketSize - 1}; const Index patchIndex = indices[0] / m_fastPatchStride; if (patchIndex != indices[1] / m_fastPatchStride) { return packetWithPossibleZero(index); } const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride; eigen_assert(otherIndex == indices[1] / m_fastOtherStride); // Find the offset of the element wrt the location of the first element. const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth, (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth}; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; // Calculate col indices in the original input tensor. const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { return internal::pset1(Scalar(m_paddingValue)); } if (inputCols[0] == inputCols[1]) { const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride}; eigen_assert(rowOffsets[0] <= rowOffsets[1]); // Calculate col indices in the original input tensor. const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { return internal::pset1(Scalar(m_paddingValue)); } if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) { // no padding const int depth_index = static_cast(Layout) == static_cast(ColMajor) ? 0 : NumDims - 1; const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index]; const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.template packet(inputIndex); } } return packetWithPossibleZero(index); } EIGEN_DEVICE_FUNC typename Eigen::internal::traits::PointerType data() const { return NULL; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator& impl() const { return m_impl; } #ifdef EIGEN_USE_SYCL // Required by SYCL in order to construct the expression tree on the device EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& xpr() const { return m_op; } #endif Index rowPaddingTop() const { return m_rowPaddingTop; } Index colPaddingLeft() const { return m_colPaddingLeft; } Index outputRows() const { return m_outputRows; } Index outputCols() const { return m_outputCols; } Index userRowStride() const { return m_row_strides; } Index userColStride() const { return m_col_strides; } Index userInRowStride() const { return m_in_row_strides; } Index userInColStride() const { return m_in_col_strides; } Index rowInflateStride() const { return m_row_inflate_strides; } Index colInflateStride() const { return m_col_inflate_strides; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // We conservatively estimate the cost for the code path where the computed // index is inside the original image and // TensorEvaluator::CoordAccess is false. const double compute_cost = 3 * TensorOpCost::DivCost() + 6 * TensorOpCost::MulCost() + 8 * TensorOpCost::MulCost(); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( std::vector* resources) const { auto block_total_size_max = numext::maxi( 1, m_device.lastLevelCacheSize() / sizeof(Scalar)); resources->push_back(internal::TensorOpResourceRequirements( internal::TensorBlockShapeType::kSkewedInnerDims, block_total_size_max)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void block( OutputTensorBlock* output_block) const { typedef internal::ImagePatchCopyOp ImagePatchCopyOp; typedef internal::ImagePatchPaddingOp ImagePatchPaddingOp; // Calculate loop limits and various input/output dim sizes. const DSizes& block_sizes = output_block->block_sizes(); const bool col_major = static_cast(Layout) == static_cast(ColMajor); const Index depth_dim_size = block_sizes[col_major ? 0 : NumDims - 1]; const Index output_depth_dim_size = m_dimensions[col_major ? 0 : NumDims - 1]; const Index row_dim_size = block_sizes[col_major ? 1 : NumDims - 2]; const Index output_row_dim_size = m_dimensions[col_major ? 1 : NumDims - 2]; const Index col_dim_size = block_sizes[col_major ? 2 : NumDims - 3]; const Index block_col_stride = row_dim_size * depth_dim_size; const Index patch_index_dim_size = block_sizes[col_major ? 3 : NumDims - 4]; const Index outer_dim_size = block_sizes.TotalSize() / (depth_dim_size * row_dim_size * col_dim_size * patch_index_dim_size); const Index patch_size = row_dim_size * col_dim_size * depth_dim_size; const Index batch_size = patch_size * patch_index_dim_size; Index output_index = output_block->first_coeff_index(); // Loop through outer dimensions. for (Index outer_dim_index = 0; outer_dim_index < outer_dim_size; ++outer_dim_index) { const Index outer_output_base_index = outer_dim_index * batch_size; // Find the offset of the element wrt the location of the first element. const Index patchIndexStart = output_index / m_fastPatchStride; const Index patchOffset = (output_index - patchIndexStart * m_patchStride) / m_fastOutputDepth; const Index colOffsetStart = patchOffset / m_fastColStride; // Other ways to index this element. const Index otherIndex = (NumDims == 4) ? 0 : output_index / m_fastOtherStride; const Index patch2DIndexStart = (NumDims == 4) ? 0 : (output_index - otherIndex * m_otherStride) / m_fastPatchStride; // Calculate starting depth index. const Index depth = output_index - (output_index / m_fastOutputDepth) * output_depth_dim_size; const Index patch_input_base_index = depth + otherIndex * m_patchInputStride; // Loop through patches. for (Index patch_index_dim_index = 0; patch_index_dim_index < patch_index_dim_size; ++patch_index_dim_index) { const Index patch_output_base_index = outer_output_base_index + patch_index_dim_index * patch_size; // Patch index corresponding to the passed in index. const Index patchIndex = patchIndexStart + patch_index_dim_index; const Index patch2DIndex = (NumDims == 4) ? patchIndex : patch2DIndexStart + patch_index_dim_index; const Index colIndex = patch2DIndex / m_fastOutputRows; const Index input_col_base = colIndex * m_col_strides; const Index row_offset_base = (patch2DIndex - colIndex * m_outputRows) * m_row_strides - m_rowPaddingTop; // Loop through columns. for (Index col_dim_index = 0; col_dim_index < col_dim_size; ++col_dim_index) { const Index col_output_base_index = patch_output_base_index + col_dim_index * block_col_stride; // Calculate col index in the input original tensor. Index colOffset = colOffsetStart + col_dim_index; Index inputCol = input_col_base + colOffset * m_in_col_strides - m_colPaddingLeft; Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0); bool pad_column = false; if (inputCol < 0 || inputCol >= m_input_cols_eff || ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) { pad_column = true; } const Index col_input_base_index = patch_input_base_index + origInputCol * m_colInputStride; const Index input_row_base = row_offset_base + ((patchOffset + col_dim_index * output_row_dim_size) - colOffset * m_colStride) * m_in_row_strides; // Loop through rows. for (Index row_dim_index = 0; row_dim_index < row_dim_size; ++row_dim_index) { const Index output_base_index = col_output_base_index + row_dim_index * depth_dim_size; bool pad_row = false; Index inputIndex; if (!pad_column) { Index inputRow = input_row_base + row_dim_index * m_in_row_strides; Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0); if (inputRow < 0 || inputRow >= m_input_rows_eff || ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) { pad_row = true; } else { inputIndex = col_input_base_index + origInputRow * m_rowInputStride; } } // Copy (or pad) along depth dimension. if (pad_column || pad_row) { ImagePatchPaddingOp::Run(depth_dim_size, Scalar(m_paddingValue), output_base_index, output_block->data()); } else { ImagePatchCopyOp::Run(*this, depth_dim_size, output_base_index, output_block->data(), inputIndex); } } } } output_index += m_otherStride; } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } Dimensions m_dimensions; Index m_otherStride; Index m_patchStride; Index m_colStride; Index m_row_strides; Index m_col_strides; Index m_in_row_strides; Index m_in_col_strides; Index m_row_inflate_strides; Index m_col_inflate_strides; Index m_input_rows_eff; Index m_input_cols_eff; Index m_patch_rows_eff; Index m_patch_cols_eff; internal::TensorIntDivisor m_fastOtherStride; internal::TensorIntDivisor m_fastPatchStride; internal::TensorIntDivisor m_fastColStride; internal::TensorIntDivisor m_fastInflateRowStride; internal::TensorIntDivisor m_fastInflateColStride; internal::TensorIntDivisor m_fastInputColsEff; Index m_rowInputStride; Index m_colInputStride; Index m_patchInputStride; Index m_inputDepth; Index m_inputRows; Index m_inputCols; Index m_outputRows; Index m_outputCols; Index m_rowPaddingTop; Index m_colPaddingLeft; internal::TensorIntDivisor m_fastOutputRows; internal::TensorIntDivisor m_fastOutputDepth; Scalar m_paddingValue; const Device& m_device; TensorEvaluator m_impl; #ifdef EIGEN_USE_SYCL // Required for SYCL in order to construct the expression tree on the device XprType m_op; #endif }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H