// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H namespace Eigen { /** \class TensorImagePatch * \ingroup CXX11_Tensor_Module * * \brief Patch extraction specialized for image processing. * This assumes that the input has a least 3 dimensions ordered as follow: * 1st dimension: channels (of size d) * 2nd dimension: rows (of size r) * 3rd dimension: columns (of size c) * There can be additional dimensions such as time (for video) or batch (for * bulk processing after the first 3. * Calling the image patch code with patch_rows and patch_cols is equivalent * to calling the regular patch extraction code with parameters d, patch_rows, * patch_cols, and 1 for all the additional dimensions. */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename packet_traits::type Packet; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; }; template struct eval, Eigen::Dense> { typedef const TensorImagePatchOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorImagePatchOp type; }; } // end namespace internal template class TensorImagePatchOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::internal::traits::Packet Packet; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, PaddingType padding_type) : m_xpr(expr), m_patch_rows(patch_rows), m_patch_cols(patch_cols), m_row_strides(row_strides), m_col_strides(col_strides), m_padding_type(padding_type) {} EIGEN_DEVICE_FUNC DenseIndex patch_rows() const { return m_patch_rows; } EIGEN_DEVICE_FUNC DenseIndex patch_cols() const { return m_patch_cols; } EIGEN_DEVICE_FUNC DenseIndex row_strides() const { return m_row_strides; } EIGEN_DEVICE_FUNC DenseIndex col_strides() const { return m_col_strides; } EIGEN_DEVICE_FUNC PaddingType padding_type() const { return m_padding_type; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const DenseIndex m_patch_rows; const DenseIndex m_patch_cols; const DenseIndex m_row_strides; const DenseIndex m_col_strides; const PaddingType m_padding_type; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorImagePatchOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value + 1; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; enum { IsAligned = false, PacketAccess = TensorEvaluator::PacketAccess, Layout = TensorEvaluator::Layout, CoordAccess = NumDims == 5, }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { // Only column major tensors are supported for now. EIGEN_STATIC_ASSERT((static_cast(Layout) == static_cast(ColMajor)), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT(NumDims >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE); const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); // Caches a few variables. m_inputRows = input_dims[1]; m_inputCols = input_dims[2]; m_row_strides = op.row_strides(); m_col_strides = op.col_strides(); // We only support same strides for both dimensions and square patches. eigen_assert(m_row_strides == m_col_strides); switch (op.padding_type()) { case PADDING_VALID: m_outputRows = ceil((m_inputRows - op.patch_rows() + 1.f) / static_cast(m_row_strides)); m_outputCols = ceil((m_inputCols - op.patch_cols() + 1.f) / static_cast(m_col_strides)); // Calculate the padding m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2; m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2; break; case PADDING_SAME: m_outputRows = ceil(m_inputRows / static_cast(m_row_strides)); m_outputCols = ceil(m_inputCols / static_cast(m_col_strides)); // Calculate the padding m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + op.patch_rows() - m_inputRows) / 2; m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + op.patch_cols() - m_inputCols) / 2; break; default: eigen_assert(false && "unexpected padding"); } // Dimensions for result of extraction. // 0: depth // 1: patch_rows // 2: patch_cols // 3: number of patches // 4 and beyond: anything else (such as batch). m_dimensions[0] = input_dims[0]; m_dimensions[1] = op.patch_rows(); m_dimensions[2] = op.patch_cols(); m_dimensions[3] = m_outputRows * m_outputCols; for (int i = 4; i < NumDims; ++i) { m_dimensions[i] = input_dims[i-1]; } // Strides for moving the patch in various dimensions. m_colStride = m_dimensions[1]; m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0]; m_otherStride = m_patchStride * m_dimensions[3]; // Strides for navigating through the input tensor. m_rowInputStride = input_dims[0]; m_colInputStride = input_dims[0] * input_dims[1]; m_patchInputStride = input_dims[0] * input_dims[1] * input_dims[2]; // Fast representations of different variables. m_fastOtherStride = internal::TensorIntDivisor(m_otherStride); m_fastPatchStride = internal::TensorIntDivisor(m_patchStride); m_fastColStride = internal::TensorIntDivisor(m_colStride); // Number of patches in the width dimension. m_fastOutputRows = internal::TensorIntDivisor(m_outputRows); m_fastDimZero = internal::TensorIntDivisor(m_dimensions[0]); } typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename XprType::PacketReturnType PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { // Patch index corresponding to the passed in index. const Index patchIndex = index / m_fastPatchStride; // Find the offset of the element wrt the location of the first element. const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastDimZero; // Other ways to index this element. const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride; const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffset = patchOffset / m_fastColStride; // Calculate col index in the input original tensor. const Index inputCol = colIndex * m_col_strides + colOffset - m_colPaddingLeft; if (inputCol < 0 || inputCol >= m_inputCols) { return Scalar(0); } const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffset = patchOffset - colOffset * m_colStride; // Calculate row index in the original input tensor. const Index inputRow = rowIndex * m_row_strides + rowOffset - m_rowPaddingTop; if (inputRow < 0 || inputRow >= m_inputRows) { return Scalar(0); } const Index depth = index - (index / m_fastDimZero) * m_dimensions[0]; const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.coeff(inputIndex); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { const Index packetSize = internal::unpacket_traits::size; EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+packetSize-1 < dimensions().TotalSize()); const Index indices[2] = {index, index + packetSize - 1}; const Index patchIndex = indices[0] / m_fastPatchStride; if (patchIndex != indices[1] / m_fastPatchStride) { return packetWithPossibleZero(index); } const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride; eigen_assert(otherIndex == indices[1] / m_fastOtherStride); // Find the offset of the element wrt the location of the first element. const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastDimZero, (indices[1] - patchIndex * m_patchStride) / m_fastDimZero}; const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride; eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride); const Index colIndex = patch2DIndex / m_fastOutputRows; const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride}; // Calculate col indices in the original input tensor. const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] - m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft}; if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) { // all zeros return internal::pset1(Scalar(0)); } if (inputCols[0] == inputCols[1]) { const Index rowIndex = patch2DIndex - colIndex * m_outputRows; const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride}; eigen_assert(rowOffsets[0] <= rowOffsets[1]); // Calculate col indices in the original input tensor. const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] - m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop}; if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) { // all zeros return internal::pset1(Scalar(0)); } if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) { // no padding const Index depth = index - (index / m_fastDimZero) * m_dimensions[0]; const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride; return m_impl.template packet(inputIndex); } } return packetWithPossibleZero(index); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } const TensorEvaluator& impl() const { return m_impl; } Index rowPaddingTop() const { return m_rowPaddingTop; } Index colPaddingLeft() const { return m_colPaddingLeft; } Index outputRows() const { return m_outputRows; } Index outputCols() const { return m_outputCols; } Index userRowStride() const { return m_row_strides; } Index userColStride() const { return m_col_strides; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array& coords) const { // Location of the first element of the patch. // 0: d, 1: patch_rows, 2: patch_cols, 3: number of patches, 4: number of batches const Index patchIndex = coords[3]; array inputCoords; inputCoords[0] = coords[0]; // depth inputCoords[1] = patchIndex / m_inputCols + coords[1] - m_rowPaddingTop; inputCoords[2] = patchIndex - patchIndex / m_inputCols * m_inputCols + coords[2] - m_colPaddingLeft; inputCoords[3] = coords[4]; // batch // If the computed coordinates are outside the original image perimeter, return 0. if (inputCoords[1] < 0 || inputCoords[1] >= m_inputRows || inputCoords[2] < 0 || inputCoords[2] >= m_inputCols) { return Scalar(0); } if (TensorEvaluator::CoordAccess) { return m_impl.coeff(inputCoords); } else { Index inputIndex = inputCoords[3] * m_patchInputStride + inputCoords[2] * m_colInputStride + inputCoords[1] * m_rowInputStride + inputCoords[0]; return m_impl.coeff(inputIndex); } } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetWithPossibleZero(Index index) const { const int packetSize = internal::unpacket_traits::size; EIGEN_ALIGN_DEFAULT typename internal::remove_const::type values[packetSize]; for (int i = 0; i < packetSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } Dimensions m_dimensions; Index m_otherStride; Index m_patchStride; Index m_colStride; Index m_row_strides; Index m_col_strides; internal::TensorIntDivisor m_fastOtherStride; internal::TensorIntDivisor m_fastPatchStride; internal::TensorIntDivisor m_fastColStride; Index m_rowInputStride; Index m_colInputStride; Index m_patchInputStride; Index m_inputRows; Index m_inputCols; Index m_outputRows; Index m_outputCols; Index m_rowPaddingTop; Index m_colPaddingLeft; internal::TensorIntDivisor m_fastOutputRows; internal::TensorIntDivisor m_fastDimZero; TensorEvaluator m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H