// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H #define EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H namespace Eigen { /** \class TensorExecutor * \ingroup CXX11_Tensor_Module * * \brief The tensor executor class. * * This class is responsible for launch the evaluation of the expression on * the specified computing device. */ namespace internal { // Default strategy: the expression is evaluated with a single cpu thread. template class TensorExecutor { public: typedef typename Expression::Index Index; EIGEN_DEVICE_FUNC static inline void run(const Expression& expr, const Device& device = Device()) { TensorEvaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); for (Index i = 0; i < size; ++i) { evaluator.evalScalar(i); } } evaluator.cleanup(); } }; template class TensorExecutor { public: typedef typename Expression::Index Index; EIGEN_DEVICE_FUNC static inline void run(const Expression& expr, const DefaultDevice& device = DefaultDevice()) { TensorEvaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); const int PacketSize = unpacket_traits::PacketReturnType>::size; const Index VectorizedSize = (size / PacketSize) * PacketSize; for (Index i = 0; i < VectorizedSize; i += PacketSize) { evaluator.evalPacket(i); } for (Index i = VectorizedSize; i < size; ++i) { evaluator.evalScalar(i); } } evaluator.cleanup(); } }; // Multicore strategy: the index space is partitioned and each partition is executed on a single core #ifdef EIGEN_USE_THREADS template struct EvalRange { static void run(Evaluator evaluator, const Index first, const Index last) { eigen_assert(last > first); for (Index i = first; i < last; ++i) { evaluator.evalScalar(i); } } }; template struct EvalRange { static void run(Evaluator evaluator, const Index first, const Index last) { eigen_assert(last > first); Index i = first; static const int PacketSize = unpacket_traits::size; if (last - first >= PacketSize) { eigen_assert(first % PacketSize == 0); Index lastPacket = last - (last % PacketSize); for (; i < lastPacket; i += PacketSize) { evaluator.evalPacket(i); } } for (; i < last; ++i) { evaluator.evalScalar(i); } } }; template class TensorExecutor { public: typedef typename Expression::Index Index; static inline void run(const Expression& expr, const ThreadPoolDevice& device) { typedef TensorEvaluator Evaluator; Evaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const Index size = array_prod(evaluator.dimensions()); static const int PacketSize = Vectorizable ? unpacket_traits::size : 1; int blocksz = std::ceil(static_cast(size)/device.numThreads()) + PacketSize - 1; const Index blocksize = numext::maxi(PacketSize, (blocksz - (blocksz % PacketSize))); const Index numblocks = size / blocksize; std::vector results; results.reserve(numblocks); for (int i = 0; i < numblocks; ++i) { results.push_back(device.enqueue(&EvalRange::run, evaluator, i*blocksize, (i+1)*blocksize)); } if (numblocks * blocksize < size) { EvalRange::run(evaluator, numblocks * blocksize, size); } for (int i = 0; i < numblocks; ++i) { wait_until_ready(results[i]); delete results[i]; } } evaluator.cleanup(); } }; #endif // GPU: the evaluation of the expression is offloaded to a GPU. #if defined(EIGEN_USE_GPU) template class TensorExecutor { public: typedef typename Expression::Index Index; static void run(const Expression& expr, const GpuDevice& device); }; template class TensorExecutor { public: typedef typename Expression::Index Index; static void run(const Expression& expr, const GpuDevice& device); }; #if defined(__CUDACC__) template __global__ void __launch_bounds__(1024) EigenMetaKernel_NonVectorizable(Evaluator memcopied_eval, Index size) { // Cuda memcopies the kernel arguments. That's fine for POD, but for more // complex types such as evaluators we should really conform to the C++ // standard and call a proper copy constructor. Evaluator eval(memcopied_eval); const Index first_index = blockIdx.x * blockDim.x + threadIdx.x; const Index step_size = blockDim.x * gridDim.x; // Use the scalar path for (Index i = first_index; i < size; i += step_size) { eval.evalScalar(i); } } template __global__ void __launch_bounds__(1024) EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) { // Cuda memcopies the kernel arguments. That's fine for POD, but for more // complex types such as evaluators we should really conform to the C++ // standard and call a proper copy constructor. Evaluator eval(memcopied_eval); const Index first_index = blockIdx.x * blockDim.x + threadIdx.x; const Index step_size = blockDim.x * gridDim.x; // Use the vector path const Index PacketSize = unpacket_traits::size; const Index vectorized_step_size = step_size * PacketSize; const Index vectorized_size = (size / PacketSize) * PacketSize; for (Index i = first_index * PacketSize; i < vectorized_size; i += vectorized_step_size) { eval.evalPacket(i); } for (Index i = vectorized_size + first_index; i < size; i += step_size) { eval.evalScalar(i); } } /*static*/ template inline void TensorExecutor::run(const Expression& expr, const GpuDevice& device) { TensorEvaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const int block_size = device.maxCudaThreadsPerBlock(); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const Index size = array_prod(evaluator.dimensions()); // Create a least one block to ensure we won't crash if we're called with tensors of size 0. const int num_blocks = numext::maxi(numext::mini(max_blocks, (size + block_size - 1) / block_size), 1); LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable, Index>), num_blocks, block_size, 0, device, evaluator, size); } evaluator.cleanup(); } /*static*/ template inline void TensorExecutor::run(const Expression& expr, const GpuDevice& device) { TensorEvaluator evaluator(expr, device); const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL); if (needs_assign) { const int block_size = device.maxCudaThreadsPerBlock(); const int max_blocks = device.getNumCudaMultiProcessors() * device.maxCudaThreadsPerMultiProcessor() / block_size; const Index size = array_prod(evaluator.dimensions()); // Create a least one block to ensure we won't crash if we're called with tensors of size 0. const int num_blocks = numext::maxi(numext::mini(max_blocks, (size + block_size - 1) / block_size), 1); LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable, Index>), num_blocks, block_size, 0, device, evaluator, size); } evaluator.cleanup(); } #endif // __CUDACC__ #endif // EIGEN_USE_GPU } // end namespace internal } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_EXECUTOR_H