// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H #define EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H namespace Eigen { /** \class TensorConversionOp * \ingroup CXX11_Tensor_Module * * \brief Tensor conversion class. This class makes it possible to vectorize * type casting operations when the number of scalars per packet in the source * and the destination type differ */ namespace internal { template struct traits > { // Type promotion to handle the case where the types of the lhs and the rhs are different. typedef TargetType Scalar; typedef typename traits::StorageKind StorageKind; typedef typename traits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = traits::NumDimensions; static const int Layout = traits::Layout; enum { Flags = 0 }; typedef typename TypeConversion::PointerType>::type PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorConversionOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorConversionOp type; }; } // end namespace internal template struct PacketConverter; template struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { return internal::pcast(m_impl.template packet(index)); } private: const TensorEvaluator& m_impl; }; template struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits::size; SrcPacket src1 = m_impl.template packet(index); SrcPacket src2 = m_impl.template packet(index + SrcPacketSize); TgtPacket result = internal::pcast(src1, src2); return result; } private: const TensorEvaluator& m_impl; }; template struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits::size; SrcPacket src1 = m_impl.template packet(index); SrcPacket src2 = m_impl.template packet(index + SrcPacketSize); SrcPacket src3 = m_impl.template packet(index + 2 * SrcPacketSize); SrcPacket src4 = m_impl.template packet(index + 3 * SrcPacketSize); TgtPacket result = internal::pcast(src1, src2, src3, src4); return result; } private: const TensorEvaluator& m_impl; }; template struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl) {} template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits::size; SrcPacket src1 = m_impl.template packet(index); SrcPacket src2 = m_impl.template packet(index + 1 * SrcPacketSize); SrcPacket src3 = m_impl.template packet(index + 2 * SrcPacketSize); SrcPacket src4 = m_impl.template packet(index + 3 * SrcPacketSize); SrcPacket src5 = m_impl.template packet(index + 4 * SrcPacketSize); SrcPacket src6 = m_impl.template packet(index + 5 * SrcPacketSize); SrcPacket src7 = m_impl.template packet(index + 6 * SrcPacketSize); SrcPacket src8 = m_impl.template packet(index + 7 * SrcPacketSize); TgtPacket result = internal::pcast(src1, src2, src3, src4, src5, src6, src7, src8); return result; } private: const TensorEvaluator& m_impl; }; template struct PacketConverter { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketConverter(const TensorEvaluator& impl) : m_impl(impl), m_maxIndex(impl.dimensions().TotalSize()) {} template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket packet(Index index) const { const int SrcPacketSize = internal::unpacket_traits::size; // Only call m_impl.packet() when we have direct access to the underlying data. This // ensures that we don't compute the subexpression twice. We may however load some // coefficients twice, but in practice this doesn't negatively impact performance. if (m_impl.data() && (index + SrcPacketSize < m_maxIndex)) { // Force unaligned memory loads since we can't ensure alignment anymore return internal::pcast(m_impl.template packet(index)); } else { const int TgtPacketSize = internal::unpacket_traits::size; typedef typename internal::unpacket_traits::type SrcType; typedef typename internal::unpacket_traits::type TgtType; internal::scalar_cast_op converter; EIGEN_ALIGN_MAX typename internal::unpacket_traits::type values[TgtPacketSize]; EIGEN_UNROLL_LOOP for (int i = 0; i < TgtPacketSize; ++i) { values[i] = converter(m_impl.coeff(index+i)); } TgtPacket rslt = internal::pload(values); return rslt; } } private: const TensorEvaluator& m_impl; const typename TensorEvaluator::Index m_maxIndex; }; template class TensorConversionOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename internal::traits::Scalar Scalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; typedef typename internal::nested::type Nested; typedef Scalar CoeffReturnType; typedef typename NumTraits::Real RealScalar; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConversionOp(const XprType& xpr) : m_xpr(xpr) {} EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; }; template struct ConversionSubExprEval { static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType) { impl.evalSubExprsIfNeeded(NULL); return true; } }; template struct ConversionSubExprEval { static EIGEN_STRONG_INLINE bool run(Eval& impl, EvalPointerType data) { return impl.evalSubExprsIfNeeded(data); } }; #ifdef EIGEN_USE_THREADS template struct ConversionSubExprEvalAsync { static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType, EvalSubExprsCallback done) { impl.evalSubExprsIfNeededAsync(nullptr, std::move(done)); } }; template struct ConversionSubExprEvalAsync { static EIGEN_STRONG_INLINE void run(Eval& impl, EvalPointerType data, EvalSubExprsCallback done) { impl.evalSubExprsIfNeededAsync(data, std::move(done)); } }; #endif namespace internal { template struct CoeffConv { template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator& impl, Index index) { internal::scalar_cast_op converter; return converter(impl.coeff(index)); } }; template struct CoeffConv { template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetType run(const TensorEvaluator& impl, Index index) { return impl.coeff(index); } }; template struct PacketConv { typedef typename internal::unpacket_traits::type SrcType; typedef typename internal::unpacket_traits::type TargetType; static const int PacketSize = internal::unpacket_traits::size; template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator& impl, Index index) { internal::scalar_cast_op converter; EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; EIGEN_UNROLL_LOOP for (int i = 0; i < PacketSize; ++i) { values[i] = converter(impl.coeff(index+i)); } TargetPacket rslt = internal::pload(values); return rslt; } }; template struct PacketConv { typedef typename internal::unpacket_traits::type SrcType; typedef typename internal::unpacket_traits::type TargetType; template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator& impl, Index index) { const int SrcCoeffRatio = internal::type_casting_traits::SrcCoeffRatio; const int TgtCoeffRatio = internal::type_casting_traits::TgtCoeffRatio; PacketConverter, SrcPacket, TargetPacket, SrcCoeffRatio, TgtCoeffRatio> converter(impl); return converter.template packet(index); } }; template struct PacketConv { typedef typename internal::unpacket_traits::type TargetType; static const int PacketSize = internal::unpacket_traits::size; template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator& impl, Index index) { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) values[i] = impl.coeff(index+i); return internal::pload(values); } }; template struct PacketConv { template static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TargetPacket run(const TensorEvaluator& impl, Index index) { return impl.template packet(index); } }; } // namespace internal // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorConversionOp XprType; typedef typename XprType::Index Index; typedef typename TensorEvaluator::Dimensions Dimensions; typedef TargetType Scalar; typedef TargetType CoeffReturnType; typedef typename internal::remove_all::Scalar>::type SrcType; typedef typename PacketType::type PacketReturnType; typedef typename PacketType::type PacketSourceType; static const int PacketSize = PacketType::size; static const bool IsSameType = internal::is_same::value; typedef StorageMemory Storage; typedef typename Storage::Type EvaluatorPointerType; enum { IsAligned = false, PacketAccess = #ifndef EIGEN_USE_SYCL true, #else TensorEvaluator::PacketAccess & internal::type_casting_traits::VectorizedCast, #endif BlockAccess = TensorEvaluator::BlockAccess, PreferBlockAccess = TensorEvaluator::PreferBlockAccess, Layout = TensorEvaluator::Layout, RawAccess = false }; static const int NumDims = internal::array_size::value; //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// typedef internal::TensorBlockDescriptor TensorBlockDesc; typedef internal::TensorBlockScratchAllocator TensorBlockScratch; typedef typename TensorEvaluator::TensorBlock ArgTensorBlock; struct TensorConversionOpBlockFactory { template struct XprType { typedef TensorConversionOp type; }; template typename XprType::type expr(const ArgXprType& expr) const { return typename XprType::type(expr); } }; typedef internal::TensorUnaryExprBlock TensorBlock; //===--------------------------------------------------------------------===// EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_impl.dimensions(); } EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { return ConversionSubExprEval, EvaluatorPointerType>::run(m_impl, data); } #ifdef EIGEN_USE_THREADS template EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( EvaluatorPointerType data, EvalSubExprsCallback done) { ConversionSubExprEvalAsync, EvaluatorPointerType, EvalSubExprsCallback>::run(m_impl, data, std::move(done)); } #endif EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return internal::CoeffConv::run(m_impl,index); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { // If we are not going to do the cast, we just need to check that base // TensorEvaluator has packet access. Otherwise we also need to make sure, // that we have an implementation of vectorized cast. const bool Vectorizable = IsSameType ? TensorEvaluator::PacketAccess : int(TensorEvaluator::PacketAccess) & int(internal::type_casting_traits::VectorizedCast); return internal::PacketConv::run(m_impl, index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double cast_cost = TensorOpCost::CastCost(); if (vectorized) { const double SrcCoeffRatio = internal::type_casting_traits::SrcCoeffRatio; const double TgtCoeffRatio = internal::type_casting_traits::TgtCoeffRatio; return m_impl.costPerCoeff(vectorized) * (SrcCoeffRatio / PacketSize) + TensorOpCost(0, 0, TgtCoeffRatio * (cast_cost / PacketSize)); } else { return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cast_cost); } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::TensorBlockResourceRequirements getResourceRequirements() const { return m_impl.getResourceRequirements(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock block(TensorBlockDesc& desc, TensorBlockScratch& scratch, bool /*root_of_expr_ast*/ = false) const { return TensorBlock(m_impl.block(desc, scratch), TensorConversionOpBlockFactory()); } EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; } /// required by sycl in order to extract the sycl accessor const TensorEvaluator& impl() const { return m_impl; } #ifdef EIGEN_USE_SYCL // binding placeholder accessors to a command group handler for SYCL EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const { m_impl.bind(cgh); } #endif protected: TensorEvaluator m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CONVERSION_H