// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H // evaluator for thread pool device #ifdef EIGEN_USE_THREADS namespace Eigen { template struct TensorEvaluator, ThreadPoolDevice> : public TensorContractionEvaluatorBase, ThreadPoolDevice> > { typedef ThreadPoolDevice Device; typedef TensorEvaluator, Device> Self; typedef TensorContractionEvaluatorBase Base; typedef TensorContractionOp XprType; typedef typename internal::remove_const::type Scalar; typedef typename XprType::Index Index; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; enum { Layout = TensorEvaluator::Layout, }; // Most of the code is assuming that both input tensors are ColMajor. If the // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: // If we want to compute A * B = C, where A is LHS and B is RHS, the code // will pretend B is LHS and A is RHS. typedef typename internal::conditional< static_cast(Layout) == static_cast(ColMajor), LeftArgType, RightArgType>::type EvalLeftArgType; typedef typename internal::conditional< static_cast(Layout) == static_cast(ColMajor), RightArgType, LeftArgType>::type EvalRightArgType; static const int LDims = internal::array_size::Dimensions>::value; static const int RDims = internal::array_size::Dimensions>::value; static const int ContractDims = internal::array_size::value; typedef array left_dim_mapper_t; typedef array right_dim_mapper_t; typedef array contract_t; typedef array left_nocontract_t; typedef array right_nocontract_t; static const int NumDims = LDims + RDims - 2 * ContractDims; typedef DSizes Dimensions; // typedefs needed in evalTo typedef typename internal::remove_const::type LhsScalar; typedef typename internal::remove_const::type RhsScalar; typedef typename internal::gebp_traits Traits; typedef TensorEvaluator LeftEvaluator; typedef TensorEvaluator RightEvaluator; TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) {} template void evalProduct(Scalar* buffer) const { const Index m = this->m_i_size; const Index n = this->m_j_size; const Index k = this->m_k_size; if (m == 0 || n == 0 || k == 0) return; #if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM) if (this->m_can_use_xsmm) { bool transposeA = !this->m_lhs_inner_dim_contiguous; bool transposeB = !this->m_rhs_inner_dim_contiguous; internal::TensorXsmmContractionBlocking blocking(k, m, n, this->m_device.numThreads(), transposeA, transposeB); if (blocking.num_threads() == 1) { this->evalGemmXSMM(buffer); } else { ContextXsmm(this, buffer, m, n, k, blocking).run(); } return; } #endif // Compute a set of algorithm parameters: // - kernel block sizes (bm, bn, bk) // - task grain sizes (number of kernels executed per task: gm, gn) // - number of threads // - sharding by row/column // - parallel packing or first lhs then rhs // and some derived parameters: // - number of tasks (nm, nn, nk) // - number of kernels (nm0, nn0) // Unfortunately, all these parameters are tightly interdependent. // So in some cases we first compute approximate values, then compute other // values based on these approximations and then refine the approximations. // There are lots of heuristics here. There is some reasoning behind them, // but ultimately they are just tuned on contraction benchmarks for // different input configurations, thread counts and instruction sets. // So feel free to question any of them. // Compute whether we want to shard by row or by column. // This is a first approximation, it will be refined later. Since we don't // know number of threads yet we use 2, because what's we are most // interested in at this point is whether it makes sense to use // parallelization at all or not. bool shard_by_col = shardByCol(m, n, 2); // First approximation of kernel blocking sizes. // Again, we don't know number of threads yet, so we use 2. Index bm, bn, bk; if (shard_by_col) { internal::TensorContractionBlocking blocking(k, m, n, 2); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } else { internal::TensorContractionBlocking blocking(k, m, n, 2); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } // Compute optimal number of threads. // Note: we use bk instead of k here because we are interested in amount of // _parallelizable_ computations, and computations are not parallelizable // across k dimension. const TensorOpCost cost = contractionCost(m, n, bm, bn, bk, shard_by_col, false); int num_threads = TensorCostModel::numThreads( static_cast(n) * m, cost, this->m_device.numThreads()); int num_threads_by_k = numThreadsInnerDim(m, n, k); if (shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) { // We are in the scenario where it is more effective to shard by the // inner dimension. this->template evalShardedByInnerDim(num_threads_by_k, buffer); return; } // TODO(dvyukov): this is a stop-gap to prevent regressions while the cost // model is not tuned. Remove this when the cost model is tuned. if (n == 1) num_threads = 1; if (num_threads == 1) { TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Unaligned, (buffer)); return; } // Now that we know number of threads, recalculate sharding and blocking. shard_by_col = shardByCol(m, n, num_threads); if (shard_by_col) { internal::TensorContractionBlocking blocking(k, m, n, num_threads); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } else { internal::TensorContractionBlocking blocking(k, m, n, num_threads); bm = blocking.mc(); bn = blocking.nc(); bk = blocking.kc(); } // Number of kernels for each dimension. Index nm0 = divup(m, bm); Index nn0 = divup(n, bn); Index nk = divup(k, bk); // Calculate task grain size (number of kernels executed per task). // This task size coarsening serves two purposes: // 1. It reduces per-task overheads including synchronization overheads. // 2. It allows to use caches better (reuse the same packed rhs in several // consecutive kernels). Index gm = 1; Index gn = 1; // If we are sharding by column, then we prefer to reduce rows first. if (shard_by_col) { gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); } else { gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col); gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col); } // Number of tasks in each dimension. Index nm = divup(nm0, gm); Index nn = divup(nn0, gn); // Last by not least, decide whether we want to issue both lhs and rhs // packing in parallel; or issue lhs packing first, and then issue rhs // packing when lhs packing completes (for !shard_by_col lhs and rhs are // swapped). Parallel packing allows more parallelism (for both packing and // kernels), while sequential packing provides better locality (once // a thread finishes rhs packing it proceed to kernels with that rhs). // First, we are interested in parallel packing if there are few tasks. bool parallel_pack = num_threads >= nm * nn; // Also do parallel packing if all data fits into L2$. if (m * bk * Index(sizeof(LhsScalar)) + n * bk * Index(sizeof(RhsScalar)) <= l2CacheSize() * num_threads) parallel_pack = true; // But don't do it if we will use each rhs only once. Locality seems to be // more important in this case. if ((shard_by_col ? nm : nn) == 1) parallel_pack = false; #define CONTEXT_ARGS \ (this, num_threads, buffer, m, n, k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, \ nn0, shard_by_col, parallel_pack) \ .run() TENSOR_CONTRACTION_DISPATCH(Context, Alignment, CONTEXT_ARGS); #undef CONTEXT_ARGS } // Context coordinates a single parallel gemm operation. template class Context { public: typedef internal::TensorContractionInputMapper< LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t, contract_t, internal::packet_traits::size, lhs_inner_dim_contiguous, false, Unaligned> LhsMapper; typedef internal::TensorContractionInputMapper< RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t, contract_t, internal::packet_traits::size, rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned> RhsMapper; typedef internal::blas_data_mapper OutputMapper; typedef internal::TensorContractionKernel< Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper> TensorContractionKernel; Context(const Self* self, int num_threads, Scalar* buffer, Index tm, Index tn, Index tk, Index bm, Index bn, Index bk, Index nm, Index nn, Index nk, Index gm, Index gn, Index nm0, Index nn0, bool shard_by_col, bool parallel_pack) : device_(self->m_device), lhs_(self->m_leftImpl, self->m_left_nocontract_strides, self->m_i_strides, self->m_left_contracting_strides, self->m_k_strides), rhs_(self->m_rightImpl, self->m_right_nocontract_strides, self->m_j_strides, self->m_right_contracting_strides, self->m_k_strides), buffer_(buffer), output_(buffer, tm), output_kernel_(self->m_output_kernel), tensor_contraction_params_(self->m_tensor_contraction_params), num_threads_(num_threads), shard_by_col_(shard_by_col), parallel_pack_(parallel_pack), m_(tm), n_(tn), k_(tk), bm_(bm), bn_(bn), bk_(bk), nm_(nm), nn_(nn), nk_(nk), gm_(gm), gn_(gn), nm0_(nm0), nn0_(nn0) { for (Index x = 0; x < P; x++) { // Normal number of notifications for k slice switch is // nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only // nm_ + nn_ notifications, because they will not receive notifications // from preceding kernels. state_switch_[x] = x == 0 ? 1 : (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) + (x == P - 1 ? nm_ * nn_ : 0); state_packing_ready_[x] = parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_); state_kernel_[x] = new std::atomic*[nm_]; for (Index m = 0; m < nm_; m++) { state_kernel_[x][m] = new std::atomic[nn_]; // Kernels generally receive 3 notifications (previous kernel + 2 // packing), but the first slice won't get notifications from previous // kernels. for (Index n = 0; n < nn_; n++) state_kernel_[x][m][n].store( (x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1), std::memory_order_relaxed); } } // Allocate memory for packed rhs/lhs matrices. size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1); size_t lhs_size = divup(bm_ * bk_ * sizeof(LhsScalar), align) * align; size_t rhs_size = divup(bn_ * bk_ * sizeof(RhsScalar), align) * align; packed_mem_ = static_cast(device_.allocate( (nm0_ * lhs_size + nn0_ * rhs_size) * std::min(nk_, P - 1))); char* mem = static_cast(packed_mem_); for (Index x = 0; x < numext::mini(nk_, P - 1); x++) { packed_lhs_[x].resize(nm0_); for (Index m = 0; m < nm0_; m++) { packed_lhs_[x][m] = reinterpret_cast(mem); mem += lhs_size; } packed_rhs_[x].resize(nn0_); for (Index n = 0; n < nn0_; n++) { packed_rhs_[x][n] = reinterpret_cast(mem); mem += rhs_size; } } } ~Context() { for (Index x = 0; x < P; x++) { for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m]; delete[] state_kernel_[x]; } device_.deallocate(packed_mem_); } void run() { // Kick off packing of the first slice. signal_switch(0, 1); // Wait for overall completion. // TODO(dvyukov): this wait can lead to deadlock. // If nthreads contractions are concurrently submitted from worker // threads, this wait will block all worker threads and the system will // deadlock. done_.Wait(); } private: Notification done_; const Device& device_; LhsMapper lhs_; RhsMapper rhs_; Scalar* const buffer_; OutputMapper output_; OutputKernelType output_kernel_; TensorContractionParams tensor_contraction_params_; const int num_threads_; const bool shard_by_col_; const bool parallel_pack_; // Matrix sizes. const Index m_; const Index n_; const Index k_; // Block sizes. const Index bm_; const Index bn_; const Index bk_; // Number of tasks. const Index nm_; const Index nn_; const Index nk_; // Task grain sizes (number of kernels executed per task). const Index gm_; const Index gn_; // Number of blocks (this is different from ni_/nn_ because of task size // coarsening). const Index nm0_; const Index nn0_; // Parallelization strategy. // // Blocks related to the same k block can run in parallel because they write // to different output blocks. So we parallelize within k slices, this // gives us parallelism level of m x n. Before we can start any kernels // related to k-th slice, we need to issue m lhs packing tasks and n rhs // packing tasks. // // However, there is a bottleneck when we are finishing kernels for k-th // slice (at the very end there is only 1 runnable kernel). To mitigate this // bottleneck we allow kernels from k-th and k+1-th slices to run in // parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same // output block, so they must not run in parallel. // // This gives us the following dependency graph. // On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs // packing tasks. // Kernel (m, n, k) can start when: // - kernel (m, n, k-1) has finished // - lhs packing (m, k) has finished // - rhs packing (n, k) has finished // Lhs/rhs packing can start when: // - all k-1 packing has finished (artificially imposed to limit amount of // parallel packing) // // On top of that we limit runnable tasks to two consecutive k slices. // This is done to limit amount of memory we need for packed lhs/rhs // (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_). // // state_switch_ tracks when we are ready to switch to the next k slice. // state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n). // These variable are rolling over 3 consecutive k slices: first two we are // actively executing + one to track completion of kernels in the second // slice. static const Index P = 3; void* packed_mem_; std::vector packed_lhs_[P - 1]; std::vector packed_rhs_[P - 1]; std::atomic** state_kernel_[P]; // state_switch_ is frequently modified by worker threads, while other // fields are read-only after constructor. Let's move it to a separate cache // line to reduce cache-coherency traffic. char pad_[128]; std::atomic state_packing_ready_[P]; std::atomic state_switch_[P]; void pack_lhs(Index m, Index k) { const Index mend = m * gm_ + gm(m); for (Index m1 = m * gm_; m1 < mend; m1++) TensorContractionKernel::packLhs(packed_lhs_[k % (P - 1)][m1], lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1)); if (!parallel_pack_ && shard_by_col_) { signal_packing(k); } else { signal_switch(k + 1); for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0); } } void pack_rhs(Index n, Index k) { const Index nend = n * gn_ + gn(n); for (Index n1 = n * gn_; n1 < nend; n1++) { if (k == 0) { // Zero the output memory in parallel. // On 10000x2x10000 mm zeroing can easily take half of time. // Zero (bn x m) row. Safe to do here because all kernels that will // write to this memory depend on completion of this task. // Note: don't call device_.memset() here. device_.memset() blocks on // thread pool worker thread, which can lead to underutilization and // deadlocks. memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar)); } TensorContractionKernel::packRhs(packed_rhs_[k % (P - 1)][n1], rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1)); } if (parallel_pack_ || shard_by_col_) { signal_switch(k + 1); for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0); } else { signal_packing(k); } } void kernel(Index m, Index n, Index k) { // Note: order of iteration matters here. Iteration over m is innermost // because we want to reuse the same packed rhs in consecutive tasks // (rhs fits into L2$ while lhs only into L3$). const Index nend = n * gn_ + gn(n); const Index mend = m * gm_ + gm(m); if (shard_by_col_) { for (Index n1 = n * gn_; n1 < nend; n1++) { for (Index m1 = m * gm_; m1 < mend; m1++) { const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_); TensorContractionKernel::invoke( output_mapper, packed_lhs_[k % (P - 1)][m1], packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1)); // We are done with the last task for the [m1, n1] block. if (k + 1 == nk_) { output_kernel_(output_mapper, tensor_contraction_params_, m1 * bm_, n1 * bn_, bm(m1), bn(n1)); } } } } else { for (Index m1 = m * gm_; m1 < mend; m1++) for (Index n1 = n * gn_; n1 < nend; n1++) { const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_); TensorContractionKernel::invoke( output_mapper, packed_lhs_[k % (P - 1)][m1], packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1), Scalar(1)); // We are done with the last task for the [m1, n1] block. if (k + 1 == nk_) { output_kernel_(output_mapper, tensor_contraction_params_, m1 * bm_, n1 * bn_, bm(m1), bn(n1)); } } } signal_kernel(m, n, k + 1, false); signal_switch(k + 2); } void signal_packing(Index k) { eigen_assert(!parallel_pack_); Index s = state_packing_ready_[k % P].fetch_sub(1); eigen_assert(s > 0); if (s != 1) return; state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_; enqueue_packing(k, shard_by_col_); } void signal_kernel(Index m, Index n, Index k, bool sync) { std::atomic* state = &state_kernel_[k % P][m][n]; Index s = state->load(); eigen_assert(s > 0); if (s != 1 && state->fetch_sub(1) != 1) return; state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed); if (sync) kernel(m, n, k); else device_.enqueueNoNotification([=]() { kernel(m, n, k); }); } void signal_switch(Index k, Index v = 1) { Index s = state_switch_[k % P].fetch_sub(v); eigen_assert(s >= v); if (s != v) return; // Ready to switch to the next k slice. // Reset counter for the next iteration. state_switch_[k % P] = (parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) + nm_ * nn_; if (k < nk_) { // Issue lhs/rhs packing. Their completion will in turn kick off // kernels. if (parallel_pack_) { enqueue_packing(k, !shard_by_col_); enqueue_packing(k, shard_by_col_); } else if (shard_by_col_) { enqueue_packing(k, false); } else { enqueue_packing(k, true); } // Termination handling. // Because kernel completion signals k + 2 switch, we need to finish nk // + 2 slices without issuing any tasks on nk + 1 slice. So here we // pretend that all nk + 1 packing tasks just finish instantly; so that // nk + 2 switch only waits for completion of nk kernels. } else if (k == nk_) { signal_switch(k + 1, parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)); } else { done_.Notify(); } } // Enqueue all rhs/lhs packing for k-th slice. void enqueue_packing(Index k, bool rhs) { enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs); } void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) { if (end - start == 1) { if (rhs) pack_rhs(start, k); else pack_lhs(start, k); } else { while (end - start > 1) { Index mid = (start + end) / 2; device_.enqueueNoNotification( [=]() { enqueue_packing_helper(mid, end, k, rhs); }); end = mid; } enqueue_packing_helper(start, end, k, rhs); } } // Block sizes with accounting for potentially incomplete last block. Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; } Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; } Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; } // Task grain sizes accounting for potentially incomplete last task. Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; } Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; } Context(const Context&) = delete; void operator=(const Context&) = delete; }; // Decide whether we want to shard m x n contraction by columns or by rows. static bool shardByCol(Index m, Index n, Index num_threads) { // Note: we are comparing both n and m against Traits::nr, it is not // a mistake. We are trying to figure out how both n and m will fit into // the main sharding dimension. // Sharding by column is the default // ... unless there is enough data for vectorization over rows if (m / num_threads >= Traits::nr && // and not enough data for vectorization over columns (n / num_threads < Traits::nr || // ... or barely enough data for vectorization over columns, // but it is not evenly dividable across threads (n / num_threads < 4 * Traits::nr && (n % (num_threads * Traits::nr)) != 0 && // ... and it is evenly dividable across threads for rows ((m % (num_threads * Traits::nr)) == 0 || // .. or it is not evenly dividable for both dimensions but // there is much more data over rows so that corner effects are // mitigated. (m / n >= 6))))) return false; // Wait, or if matrices are just substantially prolonged over the other // dimension. if (n / num_threads < 16 * Traits::nr && m > n * 32) return false; return true; } Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn, int num_threads, bool shard_by_col) const { Index gm = 1; Index gm1 = 1; Index nm0 = divup(m, bm); Index nm1 = nm0; for (;;) { // Find the next candidate for m grain size. It needs to result in // different number of blocks. E.g. if we have 10 kernels, we want to try // 5 and 10, but not 6, 7, 8 and 9. while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++; if (gm1 > nm0) break; // Check the candidate. int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads, shard_by_col); if (res < 0) break; nm1 = divup(nm0, gm1); if (res == 0) continue; // Commit new grain size. gm = gm1; } return gm; } Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm, int num_threads, bool shard_by_col) const { Index gn = 1; Index gn1 = 1; Index nn0 = divup(n, bn); Index nn1 = nn0; for (;;) { while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++; if (gn1 > nn0) break; int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads, shard_by_col); if (res < 0) break; nn1 = divup(nn0, gn1); if (res == 0) continue; gn = gn1; } return gn; } // checkGrain checks whether grain (gm, gn) is suitable and is better than // (oldgm, oldgn). int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm, Index gn, Index oldgm, Index oldgn, int num_threads, bool shard_by_col) const { const TensorOpCost cost = contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true); double taskSize = TensorCostModel::taskSize( static_cast(bm) * gm * bn * gn, cost); // If the task is too small, then we agree on it regardless of anything // else. Otherwise synchronization overheads will dominate. if (taskSize < 1) return 1; // If it is too large, then we reject it and all larger tasks. if (taskSize > 2) return -1; // Now we are in presumably good task size range. // The main deciding factor here is parallelism. Consider that we have 12 // kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes. // But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4 // of cores will be busy). While grain size 3 gives us 4 tasks, which gives // us parallelism of 1 (we can load all cores). Index nm0 = divup(m, bm); Index nn0 = divup(n, bn); Index new_tasks = divup(nm0, gm) * divup(nn0, gn); double new_parallelism = static_cast(new_tasks) / (divup(new_tasks, num_threads) * num_threads); Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn); double old_parallelism = static_cast(old_tasks) / (divup(old_tasks, num_threads) * num_threads); if (new_parallelism > old_parallelism || new_parallelism == 1) return 1; return 0; } TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk, bool shard_by_col, bool prepacked) const { const int packed_size = std::min(PacketType::size, PacketType::size); const int output_packet_size = internal::unpacket_traits::size; const double kd = static_cast(bk); double compute_bandwidth = computeBandwidth(false, bm, bn, bk); // Computations. TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size); // Output stores. cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size); if (prepacked) { // Packing and kernels are executed in different tasks. When we calculate // task grain size we look only at kernel cost assuming that kernel // is more expensive than packing. return cost; } // Lhs/rhs loads + computations. TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n); TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m); // Lhs packing memory cost does not contribute considerably to overall // execution time because lhs is prefetched early and accessed sequentially. if (shard_by_col) lhsCost.dropMemoryCost(); else rhsCost.dropMemoryCost(); return cost + lhsCost + rhsCost; } template EIGEN_STRONG_INLINE void addToBuffer(size_t n, const Scalar* src_buf, Scalar* tgt_buf) const { const int output_packet_size = internal::unpacket_traits::size; size_t i = 0; const size_t num_packets = n / output_packet_size; for (; i < output_packet_size * num_packets; i += output_packet_size) { const PacketReturnType src_val = internal::pload(src_buf + i); const PacketReturnType tgt_val = internal::ploadt(tgt_buf + i); const PacketReturnType sum = internal::padd(src_val, tgt_val); internal::pstoret(tgt_buf + i, sum); } for (; i < n; ++i) { tgt_buf[i] += src_buf[i]; } } template EIGEN_STRONG_INLINE void addAllToBuffer(size_t n, const Scalar* src_buf0, const Scalar* src_buf1, const Scalar* src_buf2, Scalar* dst_buf) const { using ::Eigen::internal::padd; using ::Eigen::internal::pload; using ::Eigen::internal::ploadt; using ::Eigen::internal::pstoret; const int output_packet_size = internal::unpacket_traits::size; size_t i = 0; const size_t num_packets = n / output_packet_size; for (; i < output_packet_size * num_packets; i += output_packet_size) { const auto src_val0 = pload(src_buf0 + i); const auto src_val1 = pload(src_buf1 + i); const auto src_val2 = pload(src_buf2 + i); const auto dst_val = ploadt(dst_buf + i); const auto sum = padd(padd(dst_val, src_val0), padd(src_val1, src_val2)); pstoret(dst_buf + i, sum); } for (; i < n; ++i) { dst_buf[i] += src_buf0[i] + src_buf1[i] + src_buf2[i]; } } // Decide whether we want to shard m x k x n contraction over the inner // (contraction) dimension (k). static bool shardByInnerDim(Index m, Index n, Index k, int num_threads, int num_threads_by_k) { std::ptrdiff_t bufsize = m * n * sizeof(Scalar); bool shard_by_k = false; if (n == 1 || // If mat*vec or... num_threads_by_k < 2 || // running single threaded or... num_threads_by_k < num_threads || // sharding by k gives less parallelism or... bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space // than L3 cache or... k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny. shard_by_k = false; } else if (numext::maxi(m, n) / num_threads < Traits::nr || // both other dimensions are tiny or... // k per thread is not small and... (k / num_threads_by_k > 8 * Traits::nr && // one of the outer dimensions is tiny or sharding by k offers // more parallelism. (numext::mini(m, n) < 2 * Traits::nr || num_threads_by_k > num_threads))) { shard_by_k = true; } return shard_by_k; } template void evalShardedByInnerDim(int num_threads, Scalar* result) const { const Index m = this->m_i_size; const Index n = this->m_j_size; const Index k = this->m_k_size; // We will compute partial results into the buffers of this size. const Index buffer_size_bytes = m * n * sizeof(Scalar); // The underlying GEMM kernel assumes that k is a multiple of // the packet size and subtle breakage occurs if this is violated. const Index packet_size = internal::packet_traits::size; const auto round_up = [=](Index index) -> Index { const Index kmultiple = packet_size <= 8 ? 8 : packet_size; return divup(index, kmultiple) * kmultiple; }; // Cost model doesn't capture well the cost associated with constructing // tensor contraction mappers and computing loop bounds in gemm_pack_lhs and // gemm_pack_rhs, so we specify minimum desired block size. const Index target_block_size = round_up(divup(k, num_threads)); const Index desired_min_block_size = 12 * packet_size; const Index block_size = numext::mini( k, numext::maxi(desired_min_block_size, target_block_size)); const Index num_blocks = divup(k, block_size); // Compute block size with accounting for potentially incomplete last block. const auto actual_block_size = [=](Index block_idx) -> Index { return block_idx + 1 < num_blocks ? block_size : k + block_size - block_size * num_blocks; }; // We compute partial gemm results in parallel, and to get the final result // we need to add them all together. For the large number of threads (>= 48) // this adds a very expensive sequential step at the end. // // We split the [0, num_blocks) into small ranges, and when a task for the // block finishes its partial gemm computation, it checks if it was the last // gemm in the range, and if so, it will add all blocks of the range. // // After all tasks finihes, we need to add only these pre-aggregated blocks. // Compute range size with accounting for potentially incomplete last range. const auto actual_range_size = [=](Index num_ranges, Index range_size, Index range_idx) -> Index { eigen_assert(range_idx < num_ranges); return range_idx + 1 < num_ranges ? range_size : num_blocks + range_size - range_size * num_ranges; }; // For now we use just a single level of ranges to compute pre-aggregated // partial sums, but in general we can use more layers to compute tree // aggregation in parallel and reduce the size of the sequential step. // // TODO(ezhulenev): Add multilevel tree aggregation? Probably will make // sense only if number of threads >= ~128? static const Index l0_size = 4; const Index l0_ranges = divup(num_blocks, l0_size); // Keep count of pending gemm tasks for each l0 range. MaxSizeVector> l0_state(l0_ranges); for (int i = 0; i < l0_ranges; ++i) { const Index num_pending_tasks = actual_range_size(l0_ranges, l0_size, i); l0_state.emplace_back(internal::convert_index(num_pending_tasks)); } MaxSizeVector block_buffers(num_blocks); auto process_block = [&, this](Index block_idx, Index begin, Index end) { Scalar* buf = block_buffers[block_idx]; ::memset(buf, 0, buffer_size_bytes); TENSOR_CONTRACTION_DISPATCH( this->template evalGemmPartialWithoutOutputKernel, Alignment, (buf, begin, end, /*num_threads=*/internal::convert_index(num_blocks))); // Check if it was the last task in l0 range. const Index l0_index = block_idx / l0_size; const int v = l0_state[l0_index].fetch_sub(1); eigen_assert(v >= 1); // If we processed the last block of the range, we can aggregate all // partial results into the first block of the range. if (v == 1) { const Index rng_size = actual_range_size(l0_ranges, l0_size, l0_index); const Index dst_block_idx = l0_index * l0_size; if (rng_size == l0_size) { addAllToBuffer( m * n, /*src_buf0=*/block_buffers[dst_block_idx + 1], /*src_buf1=*/block_buffers[dst_block_idx + 2], /*src_buf2=*/block_buffers[dst_block_idx + 3], /*dst_buf= */ block_buffers[dst_block_idx]); } else { // Aggregate blocks of potentially incomplete last range. for (int i = 1; i < rng_size; ++i) { addToBuffer(m * n, /*src_buf=*/block_buffers[dst_block_idx + i], /*dst_buf=*/block_buffers[dst_block_idx]); } } } }; Barrier barrier(internal::convert_index(num_blocks)); for (Index block_idx = 0; block_idx < num_blocks; ++block_idx) { Scalar* buf = block_idx == 0 ? result : static_cast( this->m_device.allocate(buffer_size_bytes)); block_buffers.push_back(buf); Index block_start = block_idx * block_size; Index block_end = block_start + actual_block_size(block_idx); this->m_device.enqueueNoNotification([=, &barrier, &process_block]() { process_block(block_idx, block_start, block_end); barrier.Notify(); }); } barrier.Wait(); // Aggregate partial sums from l0 ranges. Index l0_index = 1; for (; l0_index + 2 < l0_ranges; l0_index += 3) { addAllToBuffer( m * n, /*src_buf0=*/block_buffers[(l0_index + 0) * l0_size], /*src_buf1=*/block_buffers[(l0_index + 1) * l0_size], /*src_buf2=*/block_buffers[(l0_index + 2) * l0_size], /*dst_buf= */block_buffers[0]); } for (; l0_index < l0_ranges; ++l0_index) { addToBuffer(m * n, block_buffers[l0_index * l0_size], block_buffers[0]); } // Don't forget to deallocate ALL temporary buffers. for (Index i = 1; i < num_blocks; ++i) { this->m_device.deallocate(block_buffers[i]); } // Finally call output kernel with finalized output buffer. typedef internal::blas_data_mapper OutputMapper; this->m_output_kernel(OutputMapper(result, m), this->m_tensor_contraction_params, static_cast(0), static_cast(0), m, n); } TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const { // Compute cost. const int output_packet_size = internal::unpacket_traits::size; TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n); // Output stores. cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size); TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m; TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n; // Since the inner gemm kernel is always sharded by column, the lhs // load cost is negligible. lhsCost.dropMemoryCost(); return cost + lhsCost + rhsCost; } int numThreadsInnerDim(Index m, Index n, Index k) const { const int output_packet_size = internal::unpacket_traits::size; TensorOpCost cost = contractionCostPerInnerDim(m, n, k); double total_parallel_cost = TensorCostModel::totalCost(k, cost); // Cost of reduction step accumulating the m*n per-thread buffers into the // result. double reduction_cost = TensorCostModel::totalCost( m * n, TensorOpCost(2, 1, 1, true, output_packet_size)); int num_threads = 1; double min_cost = total_parallel_cost; double kPerThreadOverHead = 4000; double kFixedOverHead = 100000; for (int nt = 2; nt <= this->m_device.numThreads(); nt++) { double sequential_cost = kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead); double parallel_cost = total_parallel_cost / nt + sequential_cost; if (parallel_cost < min_cost) { num_threads = nt; min_cost = parallel_cost; } } return num_threads; } double computeBandwidth(bool shard_by_col, Index bm, Index bn, Index bk) const { // Peak VFMA bandwidth is 0.5. However if we have not enough data for // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined // experimentally. double computeBandwidth = bk == 1 ? 4.0 : (shard_by_col ? bn : bm) < Traits::nr || (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5; #ifndef EIGEN_VECTORIZE_FMA // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors. // However for MULPS/ADDPS we have dependent sequence of 2 such // instructions, // so overall bandwidth is 1.0. if (computeBandwidth == 0.5) computeBandwidth = 1.0; #endif return computeBandwidth; } #if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM) // TODO(ezhulenev): Add support for output kernels and LIBXSMM. static_assert(std::is_same::value, "XSMM does not support contraction output kernels."); template class ContextXsmm { public: ContextXsmm(const Self* self, Scalar* buffer, Index m, Index n, Index k, const internal::TensorXsmmContractionBlocking& blocking): device(self->m_device), m(m), k(k), n(n), stride_a(blocking.transposeA() ? k : m), stride_b(blocking.transposeB() ? n : k), stride_c(m), bm(blocking.mc()), bk(blocking.kc()), bn(blocking.nc()), blocks_m(blocking.blocks_m()), blocks_k(blocking.blocks_k()), blocks_n(blocking.blocks_n()), copyA(blocking.copyA()), copyB(blocking.copyB()), transposeA(blocking.transposeA()), transposeB(blocking.transposeB()), num_threads(blocking.num_threads()), buffer(buffer), leftData(self->m_leftImpl.data()), rightData(self->m_rightImpl.data()), workers_done(blocking.num_threads()), packingA_jobs(0), packingB_jobs(0), compute_jobs(0), packingA_done(blocking.blocks_m()), packingB_done(blocking.blocks_n()) {} void worker() { // Pack if (copyA) { while (true) { uint32_t mk = packingA_jobs++; Index mi = mk / blocks_k; Index ki = mk % blocks_k; if (mi >= blocks_m) break; LhsScalar * blockA = blocksA + (bk*bm) * (mi*blocks_k+ki); if (transposeA) { const LhsScalar * current_a = leftData + (bm*mi)*stride_a + (bk*ki); libxsmm_otrans(blockA, current_a, sizeof(LhsScalar), actual_bk(ki), actual_bm(mi), stride_a, bm); } else { const LhsScalar * current_a = leftData + (bk*ki)*stride_a + (bm*mi); internal::pack_simple(blockA, current_a, actual_bk(ki), actual_bm(mi), bm, stride_a); } packingA_done.at(mi)++; } } if (copyB) { while (true) { uint32_t nk = packingB_jobs++; Index ni = nk / blocks_k; Index ki = nk % blocks_k; if (ni >= blocks_n) break; RhsScalar * blockB = blocksB + (bk*bn) * (ni*blocks_k+ki); if (transposeB) { const RhsScalar * current_b = rightData + (ki*bk)*stride_b + (ni*bn); libxsmm_otrans(blockB, current_b, sizeof(RhsScalar), actual_bn(ni), actual_bk(ki), stride_b, bk); } else { const RhsScalar * current_b = rightData + (ni*bn)*stride_b + (ki*bk); internal::pack_simple(blockB, current_b, actual_bn(ni), actual_bk(ki), bk, stride_b); } packingB_done.at(ni)++; } } // Compute while (true) { uint32_t mn = compute_jobs++; Index mi = mn / blocks_n; Index ni = mn % blocks_n; if (mi >= blocks_m) break; // Wait for mi, ni packings to be done. This is more fine-grained than // waiting for all workers to finish packing. while ((copyA && (packingA_done.at(mi) < blocks_k)) || (copyB && (packingB_done.at(ni) < blocks_k))) {} for (Index ki=0; ki < blocks_k; ++ki) { const LhsScalar * current_a = copyA ? blocksA + (bk*bm) * (mi*blocks_k+ki) : leftData + (bk*ki)*stride_a + (bm*mi); const RhsScalar * current_b = copyB ? blocksB + (bk*bn) * (ni*blocks_k+ki) : rightData + (ni*bn)*stride_b + (bk*ki); Index current_stride_a = copyA ? bm : stride_a; Index current_stride_b = copyB ? bk : stride_b; // Memory may not be zeroed, overwrite instead of adding in first // iteration. float beta = ki == 0 ? 0 : 1; Scalar * current_c = buffer + (mi*bm) + (ni*bn)*stride_c; internal::libxsmm_wrapper( 0, actual_bm(mi), actual_bn(ni), actual_bk(ki), current_stride_a, current_stride_b, stride_c, 1, beta, 0) (current_a, current_b, current_c); } } workers_done.Notify(); } void run() { // Parallelization strategy. // // First pack A into blocks (sharding by m, k) and B (sharding by n,k), // then shard by m, n. // // Do not use advanced ThreadPool queuing, just run a single long-standing // function in each thread. if (copyA) { blocksA = static_cast(device.allocate( (blocks_m*bm)*(blocks_k*bk)*sizeof(LhsScalar))); } if (copyB) { blocksB = static_cast(device.allocate( (blocks_n*bn)*(blocks_k*bk)*sizeof(RhsScalar))); } for (Index i = 0; i < num_threads; ++i) { device.enqueueNoNotification([=]() { worker(); }); } workers_done.Wait(); if (copyA) { device.deallocate(blocksA); } if (copyB) { device.deallocate(blocksB); } } private: // real block size for block index in [0, ..., blocks - 1]. Index actual_bm(Index mi) const { return mi != blocks_m - 1 ? bm : m + bm - bm * blocks_m; } Index actual_bk(Index ki) const { return ki != blocks_k - 1 ? bk : k + bk - bk * blocks_k; } Index actual_bn(Index ni) const { return ni != blocks_n - 1 ? bn : n + bn - bn * blocks_n; } const Device& device; Index m, k, n; Index stride_a, stride_b, stride_c; Index bm, bk, bn; // Block sizes. Index blocks_m, blocks_k, blocks_n; // Number of blocks in each dimension. bool copyA, copyB, transposeA, transposeB; Index num_threads; Scalar *buffer; const LhsScalar *leftData; const RhsScalar *rightData; LhsScalar *blocksA; RhsScalar *blocksB; // barrier for joining all threads after all done. Barrier workers_done; // "queues" of (mi,ki), (ki,ni), (mi,ni) jobs packed [0,p)x[0,q) -> [0, p*q) std::atomic packingA_jobs; std::atomic packingB_jobs; std::atomic compute_jobs; // already packed blocks for each mi-panel in A and ni-panel in B. std::vector> packingA_done; std::vector> packingB_done; }; #endif }; } // end namespace Eigen #endif // EIGEN_USE_THREADS #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_THREAD_POOL_H