// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H #define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H namespace Eigen { /** \class TensorKChippingReshaping * \ingroup CXX11_Tensor_Module * * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions - 1; static const int Layout = XprTraits::Layout; typedef typename XprTraits::PointerType PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorChippingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorChippingOp type; }; template struct DimensionId { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) { EIGEN_UNUSED_VARIABLE(dim); eigen_assert(dim == DimId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return DimId; } }; template <> struct DimensionId { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) { eigen_assert(dim >= 0); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const { return actual_dim; } private: const DenseIndex actual_dim; }; } // end namespace internal template class TensorChippingOp : public TensorBase > { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim) : m_xpr(expr), m_offset(offset), m_dim(dim) { } EIGEN_DEVICE_FUNC const Index offset() const { return m_offset; } EIGEN_DEVICE_FUNC const Index dim() const { return m_dim.actualDim(); } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Index m_offset; const internal::DimensionId m_dim; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorChippingOp XprType; static const int NumInputDims = internal::array_size::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; enum { // Alignment can't be guaranteed at compile time since it depends on the // slice offsets. IsAligned = false, Layout = TensorEvaluator::Layout, PacketAccess = TensorEvaluator::PacketAccess, BlockAccess = TensorEvaluator::BlockAccess, // Chipping of outer-most dimension is a trivial operation, because we can // read and write directly from the underlying tensor using single offset. IsOuterChipping = (static_cast(Layout) == ColMajor && DimId == NumInputDims - 1) || (static_cast(Layout) == RowMajor && DimId == 0), // Chipping inner-most dimension. IsInnerChipping = (static_cast(Layout) == ColMajor && DimId == 0) || (static_cast(Layout) == RowMajor && DimId == NumInputDims - 1), // Do not choose block access if chipping is trivial. PreferBlockAccess = !IsOuterChipping, CoordAccess = false, // to be implemented RawAccess = false }; typedef typename internal::remove_const::type ScalarNoConst; typedef internal::TensorBlock InputTensorBlock; typedef internal::TensorBlock OutputTensorBlock; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device), m_offset(op.offset()) { EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE); eigen_assert(NumInputDims > m_dim.actualDim()); const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); eigen_assert(op.offset() < input_dims[m_dim.actualDim()]); int j = 0; for (int i = 0; i < NumInputDims; ++i) { if (i != m_dim.actualDim()) { m_dimensions[j] = input_dims[i]; ++j; } } m_stride = 1; m_inputStride = 1; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = 0; i < m_dim.actualDim(); ++i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } else { for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) { m_stride *= input_dims[i]; m_inputStride *= input_dims[i]; } } m_inputStride *= input_dims[m_dim.actualDim()]; m_inputOffset = m_stride * op.offset(); if (BlockAccess) { if (static_cast(Layout) == static_cast(ColMajor)) { m_inputStrides[0] = 1; for (int i = 1; i < NumInputDims; ++i) { m_inputStrides[i] = m_inputStrides[i - 1] * input_dims[i - 1]; } } else { m_inputStrides[NumInputDims - 1] = 1; for (int i = NumInputDims - 2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i + 1] * input_dims[i + 1]; } } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); if (IsInnerChipping) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); Index inputIndex = index * m_inputStride + m_inputOffset; EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = m_impl.coeff(inputIndex); inputIndex += m_inputStride; } PacketReturnType rslt = internal::pload(values); return rslt; } else if (IsOuterChipping) { // m_stride is always greater than index, so let's avoid the integer division. eigen_assert(m_stride > index); return m_impl.template packet(index + m_inputOffset); } else { const Index idx = index / m_stride; const Index rem = index - idx * m_stride; if (rem + PacketSize <= m_stride) { Index inputIndex = idx * m_inputStride + m_inputOffset + rem; return m_impl.template packet(inputIndex); } else { // Cross the stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index); ++index; } PacketReturnType rslt = internal::pload(values); return rslt; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double cost = 0; if ((static_cast(Layout) == static_cast(ColMajor) && m_dim.actualDim() == 0) || (static_cast(Layout) == static_cast(RowMajor) && m_dim.actualDim() == NumInputDims - 1)) { cost += TensorOpCost::MulCost() + TensorOpCost::AddCost(); } else if ((static_cast(Layout) == static_cast(ColMajor) && m_dim.actualDim() == NumInputDims - 1) || (static_cast(Layout) == static_cast(RowMajor) && m_dim.actualDim() == 0)) { cost += TensorOpCost::AddCost(); } else { cost += 3 * TensorOpCost::MulCost() + TensorOpCost::DivCost() + 3 * TensorOpCost::AddCost(); } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( std::vector* resources) const { Eigen::Index block_total_size_max = numext::maxi( 1, m_device.lastLevelCacheSize() / sizeof(Scalar)); resources->push_back(internal::TensorOpResourceRequirements( internal::kSkewedInnerDims, block_total_size_max)); m_impl.getResourceRequirements(resources); } // TODO(andydavis) Reduce the overhead of this function (experiment with // using a fixed block size). EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void block( OutputTensorBlock* output_block) const { // Calculate input block sizes. const DSizes& output_block_sizes = output_block->block_sizes(); const DSizes& output_block_strides = output_block->block_strides(); const Index chip_dim = m_dim.actualDim(); DSizes input_block_sizes; DSizes input_block_strides; for (Index i = 0; i < NumInputDims; ++i) { if (i < chip_dim) { input_block_sizes[i] = output_block_sizes[i]; input_block_strides[i] = output_block_strides[i]; } else if (i > chip_dim) { input_block_sizes[i] = output_block_sizes[i - 1]; input_block_strides[i] = output_block_strides[i - 1]; } else { input_block_sizes[i] = 1; } } // Fix up input_block_stride for chip dimension. if (static_cast(Layout) == static_cast(ColMajor)) { if (chip_dim == 0) { input_block_strides[chip_dim] = 1; } else { input_block_strides[chip_dim] = input_block_strides[chip_dim - 1] * input_block_sizes[chip_dim - 1]; } } else { if (chip_dim == NumInputDims - 1) { input_block_strides[chip_dim] = 1; } else { input_block_strides[chip_dim] = input_block_strides[chip_dim + 1] * input_block_sizes[chip_dim + 1]; } } // Instantiate and read input block from input tensor. InputTensorBlock input_block(srcCoeff(output_block->first_coeff_index()), input_block_sizes, input_block_strides, m_inputStrides, output_block->data()); m_impl.block(&input_block); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename Eigen::internal::traits::PointerType data() const { CoeffReturnType* result = const_cast(m_impl.data()); if (IsOuterChipping && result) { return result + m_inputOffset; } else { return NULL; } } /// used by sycl EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex dimId() const { return m_dim.actualDim(); } /// used by sycl EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DenseIndex& offset() const { return m_offset; } /// required by sycl in order to extract the accessor EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator& impl() const { return m_impl; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex; if (IsInnerChipping) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(m_stride == 1); inputIndex = index * m_inputStride + m_inputOffset; } else if (IsOuterChipping) { // m_stride is always greater than index, so let's avoid the integer // division. eigen_assert(m_stride > index); inputIndex = index + m_inputOffset; } else { const Index idx = index / m_stride; inputIndex = idx * m_inputStride + m_inputOffset; index -= idx * m_stride; inputIndex += index; } return inputIndex; } Dimensions m_dimensions; Index m_stride; Index m_inputOffset; Index m_inputStride; DSizes m_inputStrides; TensorEvaluator m_impl; const internal::DimensionId m_dim; const Device& m_device; // required by sycl const DenseIndex m_offset; }; // Eval as lvalue template struct TensorEvaluator, Device> : public TensorEvaluator, Device> { typedef TensorEvaluator, Device> Base; typedef TensorChippingOp XprType; static const int NumInputDims = internal::array_size::Dimensions>::value; static const int NumDims = NumInputDims-1; typedef typename XprType::Index Index; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; enum { IsAligned = false, PacketAccess = TensorEvaluator::PacketAccess, BlockAccess = TensorEvaluator::BlockAccess, Layout = TensorEvaluator::Layout, RawAccess = false, // Chipping of outer-most dimension is a trivial operation, because we can // read and write directly from the underlying tensor using single offset. IsOuterChipping = (static_cast(Layout) == ColMajor && DimId == NumInputDims - 1) || (static_cast(Layout) == RowMajor && DimId == 0), // Chipping inner-most dimension. IsInnerChipping = (static_cast(Layout) == ColMajor && DimId == 0) || (static_cast(Layout) == RowMajor && DimId == NumInputDims - 1) }; typedef typename internal::remove_const::type ScalarNoConst; typedef internal::TensorBlock InputTensorBlock; typedef internal::TensorBlock OutputTensorBlock; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) if (IsInnerChipping) { // m_stride is equal to 1, so let's avoid the integer division. eigen_assert(this->m_stride == 1); EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; internal::pstore(values, x); Index inputIndex = index * this->m_inputStride + this->m_inputOffset; for (int i = 0; i < PacketSize; ++i) { this->m_impl.coeffRef(inputIndex) = values[i]; inputIndex += this->m_inputStride; } } else if (IsOuterChipping) { // m_stride is always greater than index, so let's avoid the integer division. eigen_assert(this->m_stride > index); this->m_impl.template writePacket(index + this->m_inputOffset, x); } else { const Index idx = index / this->m_stride; const Index rem = index - idx * this->m_stride; if (rem + PacketSize <= this->m_stride) { const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem; this->m_impl.template writePacket(inputIndex, x); } else { // Cross stride boundary. Fallback to slow path. EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; internal::pstore(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index) = values[i]; ++index; } } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock( const OutputTensorBlock& output_block) { // Calculate input block sizes. const DSizes& output_block_sizes = output_block.block_sizes(); const DSizes& output_block_strides = output_block.block_strides(); const Index chip_dim = this->m_dim.actualDim(); DSizes input_block_sizes; DSizes input_block_strides; for (Index i = 0; i < NumInputDims; ++i) { if (i < chip_dim) { input_block_sizes[i] = output_block_sizes[i]; input_block_strides[i] = output_block_strides[i]; } else if (i > chip_dim) { input_block_sizes[i] = output_block_sizes[i - 1]; input_block_strides[i] = output_block_strides[i - 1]; } else { input_block_sizes[i] = 1; } } // Fix up input_block_stride for chip dimension. if (static_cast(Layout) == static_cast(ColMajor)) { if (chip_dim == 0) { input_block_strides[chip_dim] = 1; } else { input_block_strides[chip_dim] = input_block_strides[chip_dim - 1] * input_block_sizes[chip_dim - 1]; } } else { if (chip_dim == NumInputDims - 1) { input_block_strides[chip_dim] = 1; } else { input_block_strides[chip_dim] = input_block_strides[chip_dim + 1] * input_block_sizes[chip_dim + 1]; } } // Write input block. this->m_impl.writeBlock(InputTensorBlock( this->srcCoeff(output_block.first_coeff_index()), input_block_sizes, input_block_strides, this->m_inputStrides, const_cast(output_block.data()))); } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H