// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H namespace Eigen { /** \class TensorBroadcasting * \ingroup CXX11_Tensor_Module * * \brief Tensor broadcasting class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; typedef typename XprTraits::PointerType PointerType; }; template struct eval, Eigen::Dense> { typedef const TensorBroadcastingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorBroadcastingOp type; }; template struct is_input_scalar { static const bool value = false; }; template <> struct is_input_scalar > { static const bool value = true; }; #ifndef EIGEN_EMULATE_CXX11_META_H template struct is_input_scalar > { static const bool value = (Sizes::total_size == 1); }; #endif } // end namespace internal template class TensorBroadcastingOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast) : m_xpr(expr), m_broadcast(broadcast) {} EIGEN_DEVICE_FUNC const Broadcast& broadcast() const { return m_broadcast; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const Broadcast m_broadcast; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorBroadcastingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename TensorEvaluator::Dimensions InputDimensions; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = PacketType::size; bool isCopy, nByOne, oneByN; enum { IsAligned = true, PacketAccess = TensorEvaluator::PacketAccess, BlockAccess = TensorEvaluator::BlockAccess, PreferBlockAccess = true, Layout = TensorEvaluator::Layout, RawAccess = false }; typedef typename internal::remove_const::type ScalarNoConst; // Block based access to the XprType (input) tensor. typedef internal::TensorBlock TensorBlock; typedef internal::TensorBlockReader TensorBlockReader; // We do block based broadcasting using a trick with 2x tensor rank and 0 // strides. See block method implementation for details. typedef DSizes BroadcastDimensions; typedef internal::TensorBlock BroadcastTensorBlock; typedef internal::TensorBlockReader BroadcastTensorBlockReader; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : isCopy(false), nByOne(false), oneByN(false), m_device(device), m_broadcast(op.broadcast()), m_impl(op.expression(), device) { // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar // and store the result in a scalar. Instead one should reshape the scalar into a a N-D // tensor with N >= 1 of 1 element first and then broadcast. EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); const InputDimensions& input_dims = m_impl.dimensions(); isCopy = true; for (int i = 0; i < NumDims; ++i) { eigen_assert(input_dims[i] > 0); m_dimensions[i] = input_dims[i] * m_broadcast[i]; if (m_broadcast[i] != 1) { isCopy = false; } } if (static_cast(Layout) == static_cast(ColMajor)) { m_inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } } else { m_inputStrides[NumDims-1] = 1; m_outputStrides[NumDims-1] = 1; for (int i = NumDims-2; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; } } if (input_dims[0] == 1) { oneByN = true; for (int i = 1; i < NumDims; ++i) { if (m_broadcast[i] != 1) { oneByN = false; break; } } } else if (input_dims[NumDims-1] == 1) { nByOne = true; for (int i = 0; i < NumDims-1; ++i) { if (m_broadcast[i] != 1) { nByOne = false; break; } } } // Handle special format like NCHW, its input shape is '[1, N..., 1]' and // broadcast shape is '[N, 1..., N]' if (!oneByN && !nByOne) { if (input_dims[0] == 1 && input_dims[NumDims-1] == 1 && NumDims > 2) { nByOne = true; oneByN = true; for (int i = 1; i < NumDims-1; ++i) { if (m_broadcast[i] != 1) { nByOne = false; oneByN = false; break; } } } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const { if (internal::is_input_scalar::type>::value) { return m_impl.coeff(0); } if (static_cast(Layout) == static_cast(ColMajor)) { if (isCopy) { return m_impl.coeff(index); } else { return coeffColMajor(index); } } else { if (isCopy) { return m_impl.coeff(index); } else { return coeffRowMajor(index); } } } // TODO: attempt to speed this up. The integer divisions and modulo are slow EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexColMajor(Index index) const { Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } if (internal::index_statically_eq(0, 1)) { eigen_assert(index < m_impl.dimensions()[0]); inputIndex += index; } else { if (internal::index_statically_eq(0, 1)) { eigen_assert(index % m_impl.dimensions()[0] == 0); } else { inputIndex += (index % m_impl.dimensions()[0]); } } return inputIndex; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const { return m_impl.coeff(indexColMajor(index)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexRowMajor(Index index) const { Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } if (internal::index_statically_eq(NumDims - 1, 1)) { eigen_assert(index < m_impl.dimensions()[NumDims - 1]); inputIndex += index; } else { if (internal::index_statically_eq(NumDims - 1, 1)) { eigen_assert(index % m_impl.dimensions()[NumDims - 1] == 0); } else { inputIndex += (index % m_impl.dimensions()[NumDims - 1]); } } return inputIndex; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const { return m_impl.coeff(indexRowMajor(index)); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const { if (internal::is_input_scalar::type>::value) { return internal::pset1(m_impl.coeff(0)); } if (static_cast(Layout) == static_cast(ColMajor)) { if (isCopy) { #ifdef EIGEN_GPU_COMPILE_PHASE // See PR 437: on NVIDIA P100 and K20m we observed a x3-4 speed up by enforcing // unaligned loads here. The reason is unclear though. return m_impl.template packet(index); #else return m_impl.template packet(index); #endif } else if (oneByN && !nByOne) { return packetNByOne(index); } else if (!oneByN && nByOne) { return packetOneByN(index); } else if (oneByN && nByOne) { return packetOneByNByOne(index); } else { return packetColMajor(index); } } else { if (isCopy) { #ifdef EIGEN_GPU_COMPILE_PHASE // See above. return m_impl.template packet(index); #else return m_impl.template packet(index); #endif } else if (oneByN && !nByOne) { return packetOneByN(index); } else if (!oneByN && nByOne) { return packetNByOne(index); } else if (oneByN && nByOne) { return packetOneByNByOne(index); } else { return packetRowMajor(index); } } } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByNByOne (Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; Index startDim, endDim; Index inputIndex, outputOffset, batchedIndex; if (static_cast(Layout) == static_cast(ColMajor)) { startDim = NumDims - 1; endDim = 1; } else { startDim = 0; endDim = NumDims - 2; } batchedIndex = index % m_outputStrides[startDim]; inputIndex = batchedIndex / m_outputStrides[endDim]; outputOffset = batchedIndex % m_outputStrides[endDim]; if (outputOffset + PacketSize <= m_outputStrides[endDim]) { values[0] = m_impl.coeff(inputIndex); return internal::pload1(values); } else { for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) { if (outputOffset + cur < m_outputStrides[endDim]) { values[i] = m_impl.coeff(inputIndex); } else { ++inputIndex; inputIndex = (inputIndex == m_inputStrides[startDim] ? 0 : inputIndex); values[i] = m_impl.coeff(inputIndex); outputOffset = 0; cur = 0; } } return internal::pload(values); } } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByN(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); Index dim, inputIndex; if (static_cast(Layout) == static_cast(ColMajor)) { dim = NumDims - 1; } else { dim = 0; } inputIndex = index % m_inputStrides[dim]; if (inputIndex + PacketSize <= m_inputStrides[dim]) { return m_impl.template packet(inputIndex); } else { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { if (inputIndex > m_inputStrides[dim]-1) { inputIndex = 0; } values[i] = m_impl.coeff(inputIndex++); } return internal::pload(values); } } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetNByOne(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; Index dim, inputIndex, outputOffset; if (static_cast(Layout) == static_cast(ColMajor)) { dim = 1; } else { dim = NumDims - 2; } inputIndex = index / m_outputStrides[dim]; outputOffset = index % m_outputStrides[dim]; if (outputOffset + PacketSize <= m_outputStrides[dim]) { values[0] = m_impl.coeff(inputIndex); return internal::pload1(values); } else { for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) { if (outputOffset + cur < m_outputStrides[dim]) { values[i] = m_impl.coeff(inputIndex); } else { values[i] = m_impl.coeff(++inputIndex); outputOffset = 0; cur = 0; } } return internal::pload(values); } } // Ignore the LoadMode and always use unaligned loads since we can't guarantee // the alignment at compile time. template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index originalIndex = index; Index inputIndex = 0; for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } Index innermostLoc; if (internal::index_statically_eq(0, 1)) { eigen_assert(index < m_impl.dimensions()[0]); innermostLoc = index; } else { if (internal::index_statically_eq(0, 1)) { eigen_assert(index % m_impl.dimensions()[0] == 0); innermostLoc = 0; } else { innermostLoc = index % m_impl.dimensions()[0]; } } inputIndex += innermostLoc; // Todo: this could be extended to the second dimension if we're not // broadcasting alongside the first dimension, and so on. if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) { return m_impl.template packet(inputIndex); } else { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; values[0] = m_impl.coeff(inputIndex); for (int i = 1; i < PacketSize; ++i) { if (innermostLoc + i < m_impl.dimensions()[0]) { values[i] = m_impl.coeff(inputIndex+i); } else { values[i] = coeffColMajor(originalIndex+i); } } PacketReturnType rslt = internal::pload(values); return rslt; } } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); const Index originalIndex = index; Index inputIndex = 0; for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; if (internal::index_statically_eq(i, 1)) { eigen_assert(idx < m_impl.dimensions()[i]); inputIndex += idx * m_inputStrides[i]; } else { if (internal::index_statically_eq(i, 1)) { eigen_assert(idx % m_impl.dimensions()[i] == 0); } else { inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i]; } } index -= idx * m_outputStrides[i]; } Index innermostLoc; if (internal::index_statically_eq(NumDims-1, 1)) { eigen_assert(index < m_impl.dimensions()[NumDims-1]); innermostLoc = index; } else { if (internal::index_statically_eq(NumDims-1, 1)) { eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0); innermostLoc = 0; } else { innermostLoc = index % m_impl.dimensions()[NumDims-1]; } } inputIndex += innermostLoc; // Todo: this could be extended to the second dimension if we're not // broadcasting alongside the first dimension, and so on. if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) { return m_impl.template packet(inputIndex); } else { EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; values[0] = m_impl.coeff(inputIndex); for (int i = 1; i < PacketSize; ++i) { if (innermostLoc + i < m_impl.dimensions()[NumDims-1]) { values[i] = m_impl.coeff(inputIndex+i); } else { values[i] = coeffRowMajor(originalIndex+i); } } PacketReturnType rslt = internal::pload(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { double compute_cost = TensorOpCost::AddCost(); if (!isCopy && NumDims > 0) { for (int i = NumDims - 1; i > 0; --i) { compute_cost += TensorOpCost::DivCost(); if (internal::index_statically_eq(i, 1)) { compute_cost += TensorOpCost::MulCost() + TensorOpCost::AddCost(); } else { if (!internal::index_statically_eq(i, 1)) { compute_cost += TensorOpCost::MulCost() + TensorOpCost::ModCost() + TensorOpCost::AddCost(); } } compute_cost += TensorOpCost::MulCost() + TensorOpCost::AddCost(); } } return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void getResourceRequirements( std::vector* resources) const { // TODO(wuke): Targeting L1 size is 30% faster than targeting L{-1} on large // tensors. But this might need further tuning. Eigen::Index block_total_size_max = numext::maxi( 1, m_device.firstLevelCacheSize() / sizeof(Scalar)); resources->push_back(internal::TensorOpResourceRequirements( internal::kSkewedInnerDims, block_total_size_max)); m_impl.getResourceRequirements(resources); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void block( TensorBlock* output_block) const { if (NumDims <= 0) { output_block->data()[0] = m_impl.coeff(0); return; } // Because we only support kSkewedInnerDims blocking, block size should be // equal to m_dimensions for inner dims, a smaller than m_dimensions[i] size // for the first outer dim, and 1 for other outer dims. This is guaranteed // by MergeResourceRequirements() in TensorBlock.h. const Dimensions& output_block_sizes = output_block->block_sizes(); const Dimensions& output_block_strides = output_block->block_strides(); // Find where outer dims start. int outer_dim_start = 0; Index outer_dim_size = 1, inner_dim_size = 1; for (int i = 0; i < NumDims; ++i) { const int dim = static_cast(Layout) == static_cast(ColMajor) ? i : NumDims - i - 1; if (i > outer_dim_start) { eigen_assert(output_block_sizes[dim] == 1); } else if (output_block_sizes[dim] != m_dimensions[dim]) { eigen_assert(output_block_sizes[dim] < m_dimensions[dim]); outer_dim_size = output_block_sizes[dim]; } else { inner_dim_size *= output_block_sizes[dim]; ++outer_dim_start; } } if (inner_dim_size == 0 || outer_dim_size == 0) { return; } const Dimensions& input_dims = m_impl.dimensions(); // Pre-fill input_block_sizes, broadcast_block_sizes, // broadcast_block_strides, and broadcast_tensor_strides. Later on we will // only modify the outer_dim_start-th dimension on these arrays. // Calculate the input block size for looking into the input. Dimensions input_block_sizes; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = 0; i < outer_dim_start; ++i) { input_block_sizes[i] = input_dims[i]; } for (int i = outer_dim_start; i < NumDims; ++i) { input_block_sizes[i] = 1; } } else { for (int i = 0; i < outer_dim_start; ++i) { input_block_sizes[NumDims - i - 1] = input_dims[NumDims - i - 1]; } for (int i = outer_dim_start; i < NumDims; ++i) { input_block_sizes[NumDims - i - 1] = 1; } } // Broadcast with the 0-stride trick: Create 1 extra dim for each // broadcast, set the input stride to 0. // // When ColMajor: // - broadcast_block_sizes is [d_0, b_0, d_1, b_1, ...]. // // - broadcast_block_strides is [output_block_strides[0], // output_block_strides[0] * d_0, // output_block_strides[1], // output_block_strides[1] * d_1, // ...]. // // - broadcast_tensor_strides is [output_block_strides[0], // 0, // output_block_strides[1], // 0, // ...]. BroadcastDimensions broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides; for (int i = 0; i < outer_dim_start; ++i) { const int dim = static_cast(Layout) == static_cast(ColMajor) ? i : NumDims - i - 1; const int copy_dim = static_cast(Layout) == static_cast(ColMajor) ? 2 * i : 2 * NumDims - 2 * i - 1; const int broadcast_dim = static_cast(Layout) == static_cast(ColMajor) ? copy_dim + 1 : copy_dim - 1; broadcast_block_sizes[copy_dim] = input_dims[dim]; broadcast_block_sizes[broadcast_dim] = m_broadcast[dim]; broadcast_block_strides[copy_dim] = output_block_strides[dim]; broadcast_block_strides[broadcast_dim] = output_block_strides[dim] * input_dims[dim]; broadcast_tensor_strides[copy_dim] = m_inputStrides[dim]; broadcast_tensor_strides[broadcast_dim] = 0; } for (int i = 2 * outer_dim_start; i < 2 * NumDims; ++i) { const int dim = static_cast(Layout) == static_cast(ColMajor) ? i : 2 * NumDims - i - 1; broadcast_block_sizes[dim] = 1; broadcast_block_strides[dim] = 0; broadcast_tensor_strides[dim] = 0; } const int outer_dim = static_cast(Layout) == static_cast(ColMajor) ? outer_dim_start : NumDims - outer_dim_start - 1; if (outer_dim_size == 1) { // We just need one block read using the ready-set values above. BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, 0, output_block); } else if (input_dims[outer_dim] == 1) { // Broadcast outer_dim_start-th dimension (< NumDims) by outer_dim_size. const int broadcast_outer_dim = static_cast(Layout) == static_cast(ColMajor) ? 2 * outer_dim_start + 1 : 2 * NumDims - 2 * outer_dim_start - 2; broadcast_block_sizes[broadcast_outer_dim] = outer_dim_size; broadcast_tensor_strides[broadcast_outer_dim] = 0; broadcast_block_strides[broadcast_outer_dim] = output_block_strides[outer_dim]; BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, 0, output_block); } else { // The general case. Let's denote the output block as x[..., // a:a+outer_dim_size, :, ..., :], where a:a+outer_dim_size is a slice on // the outer_dim_start-th dimension (< NumDims). We need to split the // a:a+outer_dim_size into possibly 3 sub-blocks: // // (1) a:b, where b is the smallest multiple of // input_dims[outer_dim_start] in [a, a+outer_dim_size]. // // (2) b:c, where c is the largest multiple of input_dims[outer_dim_start] // in [a, a+outer_dim_size]. // // (3) c:a+outer_dim_size . // // Or, when b and c do not exist, we just need to process the whole block // together. // Find a. const Index outer_dim_left_index = output_block->first_coeff_index() / m_outputStrides[outer_dim]; // Find b and c. const Index input_outer_dim_size = input_dims[outer_dim]; // First multiple after a. This is b when <= outer_dim_left_index + // outer_dim_size. const Index first_multiple = divup(outer_dim_left_index, input_outer_dim_size) * input_outer_dim_size; if (first_multiple <= outer_dim_left_index + outer_dim_size) { // b exists, so does c. Find it. const Index last_multiple = (outer_dim_left_index + outer_dim_size) / input_outer_dim_size * input_outer_dim_size; const int copy_outer_dim = static_cast(Layout) == static_cast(ColMajor) ? 2 * outer_dim_start : 2 * NumDims - 2 * outer_dim_start - 1; const int broadcast_outer_dim = static_cast(Layout) == static_cast(ColMajor) ? 2 * outer_dim_start + 1 : 2 * NumDims - 2 * outer_dim_start - 2; if (first_multiple > outer_dim_left_index) { const Index head_size = first_multiple - outer_dim_left_index; input_block_sizes[outer_dim] = head_size; broadcast_block_sizes[copy_outer_dim] = head_size; broadcast_tensor_strides[copy_outer_dim] = m_inputStrides[outer_dim]; broadcast_block_strides[copy_outer_dim] = output_block_strides[outer_dim]; broadcast_block_sizes[broadcast_outer_dim] = 1; broadcast_tensor_strides[broadcast_outer_dim] = 0; broadcast_block_strides[broadcast_outer_dim] = output_block_strides[outer_dim] * input_dims[outer_dim]; BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, 0, output_block); } if (first_multiple < last_multiple) { input_block_sizes[outer_dim] = input_outer_dim_size; broadcast_block_sizes[copy_outer_dim] = input_outer_dim_size; broadcast_tensor_strides[copy_outer_dim] = m_inputStrides[outer_dim]; broadcast_block_strides[copy_outer_dim] = output_block_strides[outer_dim]; broadcast_block_sizes[broadcast_outer_dim] = (last_multiple - first_multiple) / input_outer_dim_size; broadcast_tensor_strides[broadcast_outer_dim] = 0; broadcast_block_strides[broadcast_outer_dim] = output_block_strides[outer_dim] * input_dims[outer_dim]; const Index offset = (first_multiple - outer_dim_left_index) * m_outputStrides[outer_dim]; BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, offset, output_block); } if (last_multiple < outer_dim_left_index + outer_dim_size) { const Index tail_size = outer_dim_left_index + outer_dim_size - last_multiple; input_block_sizes[outer_dim] = tail_size; broadcast_block_sizes[copy_outer_dim] = tail_size; broadcast_tensor_strides[copy_outer_dim] = m_inputStrides[outer_dim]; broadcast_block_strides[copy_outer_dim] = output_block_strides[outer_dim]; broadcast_block_sizes[broadcast_outer_dim] = 1; broadcast_tensor_strides[broadcast_outer_dim] = 0; broadcast_block_strides[broadcast_outer_dim] = output_block_strides[outer_dim] * input_dims[outer_dim]; const Index offset = (last_multiple - outer_dim_left_index) * m_outputStrides[outer_dim]; BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, offset, output_block); } } else { // b and c do not exist. const int copy_outer_dim = static_cast(Layout) == static_cast(ColMajor) ? 2 * outer_dim_start : 2 * NumDims - 2 * outer_dim_start - 1; input_block_sizes[outer_dim] = outer_dim_size; broadcast_block_sizes[copy_outer_dim] = outer_dim_size; broadcast_tensor_strides[copy_outer_dim] = m_inputStrides[outer_dim]; broadcast_block_strides[copy_outer_dim] = output_block_strides[outer_dim]; BroadcastBlock(input_block_sizes, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, 0, output_block); } } } EIGEN_DEVICE_FUNC typename Eigen::internal::traits::PointerType data() const { return NULL; } const TensorEvaluator& impl() const { return m_impl; } Broadcast functor() const { return m_broadcast; } private: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void BroadcastBlock( const Dimensions& input_block_sizes, const BroadcastDimensions& broadcast_block_sizes, const BroadcastDimensions& broadcast_block_strides, const BroadcastDimensions& broadcast_tensor_strides, Index offset, TensorBlock* output_block) const { TensorBlock input_view_block( static_cast(Layout) == static_cast(ColMajor) ? indexColMajor(output_block->first_coeff_index() + offset) : indexRowMajor(output_block->first_coeff_index() + offset), input_block_sizes, Dimensions(m_inputStrides), Dimensions(m_inputStrides), NULL); internal::TensorBlockView input_block(m_device, m_impl, input_view_block); BroadcastTensorBlock broadcast_block( 0, broadcast_block_sizes, broadcast_block_strides, broadcast_tensor_strides, output_block->data() + offset); BroadcastTensorBlockReader::Run(&broadcast_block, input_block.data()); } protected: const Device& m_device; const Broadcast m_broadcast; Dimensions m_dimensions; array m_outputStrides; array m_inputStrides; TensorEvaluator m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H