// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #define EIGEN_NO_STATIC_ASSERT #include "main.h" template void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); } template void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix ColVectorType; typedef Matrix RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); } void test_vectorwiseop() { CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); CALL_SUBTEST_2(vectorwiseop_array(Array())); CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); CALL_SUBTEST_5(vectorwiseop_matrix(Matrix())); CALL_SUBTEST_6(vectorwiseop_matrix(MatrixXd(7,2))); }