// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" struct Good1 { MatrixXd m; // good: m will allocate its own array, taking care of alignment. Good1() : m(20,20) {} }; struct Good2 { Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be aligned }; struct Good3 { Vector2f m; // good: same reason }; struct Bad4 { Vector2d m; // bad: sizeof(m)%16==0 so alignment is required }; struct Bad5 { Matrix m; // bad: same reason }; struct Bad6 { Matrix m; // bad: same reason }; struct Good7 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW Vector2d m; float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects }; struct Good8 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW float f; // try the f at first -- the EIGEN_ALIGN_128 attribute of m should make that still work Matrix4f m; }; struct Good9 { Matrix m; // good: no alignment requested float f; }; template struct Depends { EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align) Vector2d m; float f; }; template void check_unalignedassert_good() { T *x, *y; x = new T; delete x; y = new T[2]; delete[] y; } #if EIGEN_ALIGN template void check_unalignedassert_bad() { float buf[sizeof(T)+16]; float *unaligned = buf; while((reinterpret_cast(unaligned)&0xf)==0) ++unaligned; // make sure unaligned is really unaligned T *x = ::new(static_cast(unaligned)) T; x->~T(); } #endif void unalignedassert() { check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); #if EIGEN_ALIGN VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); VERIFY_RAISES_ASSERT(check_unalignedassert_bad()); #endif check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good >(); #if EIGEN_ALIGN VERIFY_RAISES_ASSERT(check_unalignedassert_bad >()); #endif } void test_unalignedassert() { CALL_SUBTEST(unalignedassert()); }