// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" struct TestNew1 { MatrixXd m; // good: m will allocate its own array, taking care of alignment. TestNew1() : m(20,20) {} }; struct TestNew2 { Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned, // 8-byte alignment is good enough here, which we'll get automatically }; struct TestNew3 { Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned }; struct TestNew4 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW Vector2d m; float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects }; struct TestNew5 { EIGEN_MAKE_ALIGNED_OPERATOR_NEW float f; // try the f at first -- the EIGEN_ALIGN16 attribute of m should make that still work Matrix4f m; }; struct TestNew6 { Matrix m; // good: no alignment requested float f; }; template struct Depends { EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align) Vector2d m; float f; }; template void check_unalignedassert_good() { T *x, *y; x = new T; delete x; y = new T[2]; delete[] y; } #if EIGEN_ALIGN template void construct_at_boundary(int boundary) { char buf[sizeof(T)+256]; size_t _buf = reinterpret_cast(buf); _buf += (16 - (_buf % 16)); // make 16-byte aligned _buf += boundary; // make exact boundary-aligned T *x = ::new(reinterpret_cast(_buf)) T; x->~T(); } #endif void unalignedassert() { #if EIGEN_ALIGN construct_at_boundary(4); construct_at_boundary(4); construct_at_boundary(16); construct_at_boundary(16); construct_at_boundary(4); construct_at_boundary(16); construct_at_boundary(16); construct_at_boundary(4); construct_at_boundary(16); construct_at_boundary(16); construct_at_boundary(4); construct_at_boundary(16); construct_at_boundary(16); construct_at_boundary(4); construct_at_boundary(16); construct_at_boundary(16); #endif check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good(); check_unalignedassert_good >(); #if EIGEN_ALIGN VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); VERIFY_RAISES_ASSERT(construct_at_boundary(8)); #endif } void test_unalignedassert() { CALL_SUBTEST(unalignedassert()); }