// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "sparse.h" template void sparse_permutations(const SparseMatrixType& ref) { typedef typename SparseMatrixType::Index Index; const Index rows = ref.rows(); const Index cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::Index Index; typedef SparseMatrix OtherSparseMatrixType; typedef Matrix DenseMatrix; typedef Matrix VectorI; double density = (std::max)(8./(rows*cols), 0.01); SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols); OtherSparseMatrixType res; DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d; initSparse(density, mat_d, mat, 0); up = mat.template triangularView(); lo = mat.template triangularView(); up_sym_d = mat_d.template selfadjointView(); lo_sym_d = mat_d.template selfadjointView(); VERIFY_IS_APPROX(mat, mat_d); VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView())); VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView())); PermutationMatrix p, p_null; VectorI pi; randomPermutationVector(pi, cols); p.indices() = pi; res = mat*p; res_d = mat_d*p; VERIFY(res.isApprox(res_d) && "mat*p"); res = p*mat; res_d = p*mat_d; VERIFY(res.isApprox(res_d) && "p*mat"); res = mat*p.inverse(); res_d = mat*p.inverse(); VERIFY(res.isApprox(res_d) && "mat*inv(p)"); res = p.inverse()*mat; res_d = p.inverse()*mat_d; VERIFY(res.isApprox(res_d) && "inv(p)*mat"); res = mat.twistedBy(p); res_d = (p * mat_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "p*mat*inv(p)"); res = mat.template selfadjointView().twistedBy(p_null); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full"); res = mat.template selfadjointView().twistedBy(p_null); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full"); res = up.template selfadjointView().twistedBy(p_null); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "upper selfadjoint to full"); res = lo.template selfadjointView().twistedBy(p_null); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "lower selfadjoint full"); res = mat.template selfadjointView(); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full"); res = mat.template selfadjointView(); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full"); res = up.template selfadjointView(); res_d = up_sym_d; VERIFY(res.isApprox(res_d) && "upper selfadjoint to full"); res = lo.template selfadjointView(); res_d = lo_sym_d; VERIFY(res.isApprox(res_d) && "lower selfadjoint full"); res.template selfadjointView() = mat.template selfadjointView(); res_d = up_sym_d.template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper"); res.template selfadjointView() = mat.template selfadjointView(); res_d = up_sym_d.template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower"); res.template selfadjointView() = mat.template selfadjointView(); res_d = lo_sym_d.template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower to upper"); res.template selfadjointView() = mat.template selfadjointView(); res_d = lo_sym_d.template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower to lower"); res.template selfadjointView() = mat.template selfadjointView().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to upper"); res.template selfadjointView() = mat.template selfadjointView().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to upper"); res.template selfadjointView() = mat.template selfadjointView().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to lower"); res.template selfadjointView() = mat.template selfadjointView().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to lower"); res.template selfadjointView() = up.template selfadjointView().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to upper"); res.template selfadjointView() = lo.template selfadjointView().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to upper"); res.template selfadjointView() = lo.template selfadjointView().twistedBy(p); res_d = ((p * lo_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to lower"); res.template selfadjointView() = up.template selfadjointView().twistedBy(p); res_d = ((p * up_sym_d) * p.inverse()).eval().template triangularView(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to lower"); res = mat.template selfadjointView().twistedBy(p); res_d = (p * up_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "full selfadjoint upper twisted to full"); res = mat.template selfadjointView().twistedBy(p); res_d = (p * lo_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "full selfadjoint lower twisted to full"); res = up.template selfadjointView().twistedBy(p); res_d = (p * up_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "upper selfadjoint twisted to full"); res = lo.template selfadjointView().twistedBy(p); res_d = (p * lo_sym_d) * p.inverse(); VERIFY(res.isApprox(res_d) && "lower selfadjoint twisted to full"); } template void sparse_permutations_all(int size) { CALL_SUBTEST(( sparse_permutations(SparseMatrix(size,size)) )); CALL_SUBTEST(( sparse_permutations(SparseMatrix(size,size)) )); CALL_SUBTEST(( sparse_permutations(SparseMatrix(size,size)) )); CALL_SUBTEST(( sparse_permutations(SparseMatrix(size,size)) )); } void test_sparse_permutations() { for(int i = 0; i < g_repeat; i++) { int s = Eigen::internal::random(1,50); CALL_SUBTEST_1(( sparse_permutations_all(s) )); CALL_SUBTEST_2(( sparse_permutations_all >(s) )); } }