// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "sparse.h" template void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::Index Index; const Index rows = ref.rows(); const Index cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; Scalar eps = 1e-6; SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); Scalar s1 = internal::random(); std::vector zeroCoords; std::vector nonzeroCoords; initSparse(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); /* // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { int j = internal::random(0,cols-1); int i = internal::random(0,rows-1); int w = internal::random(1,cols-j-1); int h = internal::random(1,rows-i-1); // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(int c=0; c(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random(); } } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test insert (fully random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.reserve(10); for (int k=0; k(0,rows-1); int j = internal::random(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random(); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m1(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse(density, refM1, m1); initSparse(density, refM2, m2); initSparse(density, refM3, m3); initSparse(density, refM4, m4); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); int j0 = internal::random(0,rows-1); int j1 = internal::random(0,rows-1); VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); //m2.innerVector(j0) = 2*m2.innerVector(j1); //refMat2.col(j0) = 2*refMat2.col(j1); //VERIFY_IS_APPROX(m2, refMat2); } // test innerVectors() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); int j0 = internal::random(0,rows-2); int j1 = internal::random(0,rows-2); int n0 = internal::random(1,rows-std::max(j0,j1)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); } // test prune { SparseMatrixType m2(rows, rows); DenseMatrix refM2(rows, rows); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; for (int j=0; j(0,1); if (x<0.1) { // do nothing } else if (x<0.5) { countFalseNonZero++; m2.insertBackByOuterInner(j,i) = Scalar(0); } else { countTrueNonZero++; m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1); } } } m2.finalize(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } // test selfadjointView { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse(density, refMat2, m2); refMat3 = refMat2.template selfadjointView(); m3 = m2.template selfadjointView(); VERIFY_IS_APPROX(m3, refMat3); } // test sparseView { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); } } void test_sparse_basic() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( sparse_basic(SparseMatrix(8, 8)) ); CALL_SUBTEST_2( sparse_basic(SparseMatrix >(16, 16)) ); CALL_SUBTEST_1( sparse_basic(SparseMatrix(33, 33)) ); CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix(8, 8)) ); } }