// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2010 Jitse Niesen // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template void schur(int size = MatrixType::ColsAtCompileTime) { typedef typename ComplexSchur::ComplexScalar ComplexScalar; typedef typename ComplexSchur::ComplexMatrixType ComplexMatrixType; // Test basic functionality: T is triangular and A = U T U* for(int counter = 0; counter < g_repeat; ++counter) { MatrixType A = MatrixType::Random(size, size); ComplexSchur schurOfA(A); VERIFY_IS_EQUAL(schurOfA.info(), Success); ComplexMatrixType U = schurOfA.matrixU(); ComplexMatrixType T = schurOfA.matrixT(); for(int row = 1; row < size; ++row) { for(int col = 0; col < row; ++col) { VERIFY(T(row,col) == (typename MatrixType::Scalar)0); } } VERIFY_IS_APPROX(A.template cast(), U * T * U.adjoint()); } // Test asserts when not initialized ComplexSchur csUninitialized; VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); VERIFY_RAISES_ASSERT(csUninitialized.matrixU()); VERIFY_RAISES_ASSERT(csUninitialized.info()); // Test whether compute() and constructor returns same result MatrixType A = MatrixType::Random(size, size); ComplexSchur cs1; cs1.compute(A); ComplexSchur cs2(A); VERIFY_IS_EQUAL(cs1.info(), Success); VERIFY_IS_EQUAL(cs2.info(), Success); VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU()); // Test computation of only T, not U ComplexSchur csOnlyT(A, false); VERIFY_IS_EQUAL(csOnlyT.info(), Success); VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); VERIFY_RAISES_ASSERT(csOnlyT.matrixU()); if (size > 1) { // Test matrix with NaN A(0,0) = std::numeric_limits::quiet_NaN(); ComplexSchur csNaN(A); VERIFY_IS_EQUAL(csNaN.info(), NoConvergence); } } void test_schur_complex() { CALL_SUBTEST_1(( schur() )); CALL_SUBTEST_2(( schur(internal::random(1,50)) )); CALL_SUBTEST_3(( schur, 1, 1> >() )); CALL_SUBTEST_4(( schur >() )); // Test problem size constructors CALL_SUBTEST_5(ComplexSchur(10)); }