// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Alexey Korepanov // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template void real_qz(const MatrixType& m) { /* this test covers the following files: RealQZ.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RealVectorType; typedef typename std::complex::Real> Complex; Index dim = m.cols(); MatrixType A = MatrixType::Random(dim,dim), B = MatrixType::Random(dim,dim); RealQZ qz(A,B); VERIFY_IS_EQUAL(qz.info(), Success); // check for zeros bool all_zeros = true; for (Index i=0; i0 && internal::abs(qz.matrixS()(i,j))!=Scalar(0.0) && internal::abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0)) all_zeros = false; } VERIFY_IS_EQUAL(all_zeros, true); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim)); VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim)); } void test_real_qz() { int s; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( real_qz(Matrix4f()) ); s = internal::random(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) ); // some trivial but implementation-wise tricky cases CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) ); CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) ); CALL_SUBTEST_3( real_qz(Matrix()) ); CALL_SUBTEST_4( real_qz(Matrix2d()) ); } EIGEN_UNUSED_VARIABLE(s) }