// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #define EIGEN_WORK_AROUND_QT_BUG_CALLING_WRONG_OPERATOR_NEW_FIXED_IN_QT_4_5 #include "main.h" #include #include #include template void check_qtvector_matrix(const MatrixType& m) { int rows = m.rows(); int cols = m.cols(); MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); QVector v(10, MatrixType(rows,cols)), w(20, y); for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], y); } v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.fill(y,22); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) MatrixType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(int i=23; i void check_qtvector_transform(const TransformType&) { typedef typename TransformType::MatrixType MatrixType; TransformType x(MatrixType::Random()), y(MatrixType::Random()); QVector v(10), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.fill(y,22); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) TransformType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(unsigned int i=23; int(i) void check_qtvector_quaternion(const QuaternionType&) { typedef typename QuaternionType::Coefficients Coefficients; QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); QVector v(10), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for(int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.fill(y,22); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType)); // do a lot of push_back such that the vector gets internally resized // (with memory reallocation) QuaternionType* ref = &w[0]; for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) v.push_back(w[i%w.size()]); for(unsigned int i=23; int(i)