// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void trmm(int size,int othersize) { typedef typename NumTraits::Real RealScalar; Matrix tri(size,size), upTri(size,size), loTri(size,size); Matrix ge1(size,othersize), ge2(10,size), ge3; Matrix rge3; Scalar s1 = ei_random(), s2 = ei_random(); tri.setRandom(); loTri = tri.template triangularView(); upTri = tri.template triangularView(); ge1.setRandom(); ge2.setRandom(); VERIFY_IS_APPROX( ge3 = tri.template triangularView() * ge1, loTri * ge1); VERIFY_IS_APPROX(rge3 = tri.template triangularView() * ge1, loTri * ge1); VERIFY_IS_APPROX( ge3 = tri.template triangularView() * ge1, upTri * ge1); VERIFY_IS_APPROX(rge3 = tri.template triangularView() * ge1, upTri * ge1); VERIFY_IS_APPROX( ge3 = (s1*tri.adjoint()).template triangularView() * (s2*ge1), s1*loTri.adjoint() * (s2*ge1)); VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView() * ge1, loTri.adjoint() * ge1); VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView() * ge1, upTri.adjoint() * ge1); VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView() * ge1, upTri.adjoint() * ge1); VERIFY_IS_APPROX( ge3 = tri.template triangularView() * ge2.adjoint(), loTri * ge2.adjoint()); VERIFY_IS_APPROX(rge3 = tri.template triangularView() * ge2.adjoint(), loTri * ge2.adjoint()); VERIFY_IS_APPROX( ge3 = tri.template triangularView() * ge2.adjoint(), upTri * ge2.adjoint()); VERIFY_IS_APPROX(rge3 = tri.template triangularView() * ge2.adjoint(), upTri * ge2.adjoint()); VERIFY_IS_APPROX( ge3 = (s1*tri).adjoint().template triangularView() * ge2.adjoint(), ei_conj(s1) * loTri.adjoint() * ge2.adjoint()); VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint()); VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint()); VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint()); } void test_product_trmm() { for(int i = 0; i < g_repeat ; i++) { trmm(ei_random(1,320),ei_random(1,320)); trmm >(ei_random(1,320),ei_random(1,320)); } }