// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void syrk(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix Rhs1; typedef Matrix Rhs2; typedef Matrix Rhs3; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); Rhs1 rhs1 = Rhs1::Random(ei_random(1,320), cols); Rhs2 rhs2 = Rhs2::Random(rows, ei_random(1,320)); Rhs3 rhs3 = Rhs3::Random(ei_random(1,320), rows); Scalar s1 = ei_random(); m2.setZero(); VERIFY_IS_APPROX((m2.template selfadjointView().rankUpdate(rhs2,s1)._expression()), ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView().toDense())); m2.setZero(); VERIFY_IS_APPROX(m2.template selfadjointView().rankUpdate(rhs2,s1)._expression(), (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView().toDense()); m2.setZero(); VERIFY_IS_APPROX(m2.template selfadjointView().rankUpdate(rhs1.adjoint(),s1)._expression(), (s1 * rhs1.adjoint() * rhs1).eval().template triangularView().toDense()); m2.setZero(); VERIFY_IS_APPROX(m2.template selfadjointView().rankUpdate(rhs1.adjoint(),s1)._expression(), (s1 * rhs1.adjoint() * rhs1).eval().template triangularView().toDense()); m2.setZero(); VERIFY_IS_APPROX(m2.template selfadjointView().rankUpdate(rhs3.adjoint(),s1)._expression(), (s1 * rhs3.adjoint() * rhs3).eval().template triangularView().toDense()); m2.setZero(); VERIFY_IS_APPROX(m2.template selfadjointView().rankUpdate(rhs3.adjoint(),s1)._expression(), (s1 * rhs3.adjoint() * rhs3).eval().template triangularView().toDense()); } void test_product_syrk() { for(int i = 0; i < g_repeat ; i++) { int s; s = ei_random(10,320); CALL_SUBTEST( syrk(MatrixXf(s, s)) ); s = ei_random(10,320); CALL_SUBTEST( syrk(MatrixXcd(s, s)) ); } }