// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void product_selfadjoint(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RowVectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3; VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows); RowVectorType r1 = RowVectorType::Random(rows), r2 = RowVectorType::Random(rows); Scalar s1 = ei_random(), s2 = ei_random(), s3 = ei_random(); m1 = m1.adjoint()*m1; // lower m2.setZero(); m2.template triangularView() = m1; ei_product_selfadjoint_vector (cols,m2.data(),cols, v1.data(), v2.data()); VERIFY_IS_APPROX(v2, m1 * v1); VERIFY_IS_APPROX((m2.template selfadjointView() * v1).eval(), m1 * v1); // upper m2.setZero(); m2.template triangularView() = m1; ei_product_selfadjoint_vector(cols,m2.data(),cols, v1.data(), v2.data()); VERIFY_IS_APPROX(v2, m1 * v1); VERIFY_IS_APPROX((m2.template selfadjointView() * v1).eval(), m1 * v1); // rank2 update m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(v1,v2); VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView().toDense()); m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(-v1,s2*v2,s3); VERIFY_IS_APPROX(m2, (m1 + (-s2*s3) * (v1 * v2.adjoint()+ v2 * v1.adjoint())).template triangularView().toDense()); m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(-r1.adjoint(),r2.adjoint()*s3,s1); VERIFY_IS_APPROX(m2, (m1 + (-s3*s1) * (r1.adjoint() * r2 + r2.adjoint() * r1)).template triangularView().toDense()); if (rows>1) { m2 = m1.template triangularView(); m2.block(1,1,rows-1,cols-1).template selfadjointView().rank2update(v1.end(rows-1),v2.start(cols-1)); m3 = m1; m3.block(1,1,rows-1,cols-1) += v1.end(rows-1) * v2.start(cols-1).adjoint()+ v2.start(cols-1) * v1.end(rows-1).adjoint(); VERIFY_IS_APPROX(m2, m3.template triangularView().toDense()); } } void test_product_selfadjoint() { for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST( product_selfadjoint(Matrix()) ); CALL_SUBTEST( product_selfadjoint(Matrix()) ); CALL_SUBTEST( product_selfadjoint(Matrix3d()) ); CALL_SUBTEST( product_selfadjoint(MatrixXcf(4, 4)) ); CALL_SUBTEST( product_selfadjoint(MatrixXcd(21,21)) ); CALL_SUBTEST( product_selfadjoint(MatrixXd(14,14)) ); CALL_SUBTEST( product_selfadjoint(Matrix(17,17)) ); CALL_SUBTEST( product_selfadjoint(Matrix,Dynamic,Dynamic,RowMajor>(19, 19)) ); } for(int i = 0; i < g_repeat ; i++) { int size = ei_random(10,1024); int cols = ei_random(10,320); MatrixXf A = MatrixXf::Random(size,size); MatrixXf B = MatrixXf::Random(size,cols); MatrixXf C = MatrixXf::Random(size,cols); MatrixXf R = MatrixXf::Random(size,cols); A = (A+A.transpose()).eval(); R = C + (A * B).eval(); A.corner(TopRight,size-1,size-1).triangularView().setZero(); ei_product_selfadjoint_matrix (size, A.data(), A.stride(), B.data(), B.stride(), false, B.cols(), C.data(), C.stride(), 1); // std::cerr << A << "\n\n" << C << "\n\n" << R << "\n\n"; VERIFY_IS_APPROX(C,R); } }