// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . static int nb_temporaries; #define EIGEN_DEBUG_MATRIX_CTOR(MTYPE) { \ if(MTYPE::SizeAtCompileTime==Dynamic) \ nb_temporaries++; \ } #include "main.h" #include #define VERIFY_EVALUATION_COUNT(XPR,N) {\ nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY( (#XPR) && nb_temporaries==N ); \ } template void product_notemporary(const MatrixType& m) { /* This test checks the number of tempories created * during the evaluation of a complex expression */ typedef typename MatrixType::Scalar Scalar; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix RowMajorMatrixType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows); ColVectorType vc2 = ColVectorType::Random(cols), cvres(cols); RowMajorMatrixType rm3(rows, cols); Scalar s1 = ei_random(), s2 = ei_random(), s3 = ei_random(); int c0 = ei_random(4,cols-8), c1 = ei_random(8,cols-c0), r0 = ei_random(4,cols-8), r1 = ei_random(8,rows-r0); VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).lazy(), 0); // NOTE in this case the slow product is used: // FIXME: // VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * m2.adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * (m1*s3+m2*s2).adjoint()).lazy(), 1); VERIFY_EVALUATION_COUNT( m3 = ((s1 * m1).adjoint() * s2 * m2).lazy(), 0); VERIFY_EVALUATION_COUNT( m3 -= (s1 * (-m1*s3).adjoint() * (s2 * m2 * s3)).lazy(), 0); VERIFY_EVALUATION_COUNT( m3 -= (s1 * (m1.transpose() * m2)).lazy(), 1); VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) += (-m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint()).lazy() ), 0); VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) -= (s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1)).lazy() ), 0); // NOTE this is because the Block expression is not handled yet by our expression analyser VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) = (s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1)).lazy() ), 1); VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).template triangularView() * m2).lazy(), 0); VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView() * (m2+m2)).lazy(), 1); VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView() * m2.adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( rm3.col(c0) = ((s1 * m1.adjoint()).template triangularView() * (s2*m2.row(c0)).adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m1.template triangularView().solveInPlace(m3), 0); VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView().solveInPlace(m3.transpose()), 0); VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).adjoint().template selfadjointView() * (-m2*s3).adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3 = (s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView()).lazy(), 0); VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template selfadjointView() * m2.adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3.col(c0) = ((s1 * m1).adjoint().template selfadjointView() * (-m2.row(c0)*s3).adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3.col(c0) -= ((s1 * m1).adjoint().template selfadjointView() * (-m2.row(c0)*s3).adjoint()).lazy(), 0); VERIFY_EVALUATION_COUNT( m3.block(r0,r0,r1,r1) += ((m1.block(r0,r0,r1,r1).template selfadjointView() * (s1*m2.block(c0,r0,c1,r1)) )).lazy(), 0); VERIFY_EVALUATION_COUNT( m3.block(r0,r0,r1,r1) = ((m1.block(r0,r0,r1,r1).template selfadjointView() * m2.block(c0,r0,c1,r1) )).lazy(), 0); VERIFY_EVALUATION_COUNT( m3.template selfadjointView().rankUpdate(m2.adjoint()), 0); m3.resize(1,1); VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template selfadjointView() * m2.block(c0,r0,c1,r1) )).lazy(), 0); m3.resize(1,1); VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template triangularView() * m2.block(c0,r0,c1,r1) )).lazy(), 0); } void test_product_notemporary() { int s; for(int i = 0; i < g_repeat; i++) { s = ei_random(16,320); CALL_SUBTEST( product_notemporary(MatrixXf(s, s)) ); s = ei_random(16,120); CALL_SUBTEST( product_notemporary(MatrixXcd(s,s)) ); } }