// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template bool areNotApprox(const MatrixBase& m1, const MatrixBase& m2, typename Derived1::RealScalar epsilon = precision()) { return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff())); } template void product(const MatrixType& m) { /* this test covers the following files: Identity.h Product.h */ typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::FloatingPoint FloatingPoint; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix RowSquareMatrixType; typedef Matrix ColSquareMatrixType; typedef Matrix OtherMajorMatrixType; int rows = m.rows(); int cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols); RowSquareMatrixType identity = RowSquareMatrixType::identity(rows, rows), square = RowSquareMatrixType::random(rows, rows), res = RowSquareMatrixType::random(rows, rows); ColSquareMatrixType square2 = ColSquareMatrixType::random(cols, cols), res2 = ColSquareMatrixType::random(cols, cols); RowVectorType v1 = RowVectorType::random(rows), v2 = RowVectorType::random(rows), vzero = RowVectorType::zero(rows); ColVectorType vc2 = ColVectorType::random(cols), vcres; OtherMajorMatrixType tm1 = m1; Scalar s1 = ei_random(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); // begin testing Product.h: only associativity for now // (we use Transpose.h but this doesn't count as a test for it) VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); m3 = m1; m3 *= m1.transpose() * m2; VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2)); // continue testing Product.h: distributivity VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2); VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2); // continue testing Product.h: compatibility with ScalarMultiple.h VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1); VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1)); // again, test operator() to check const-qualification s1 += (square.lazy() * m1)(r,c); // test Product.h together with Identity.h VERIFY_IS_APPROX(v1, identity*v1); VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); // again, test operator() to check const-qualification VERIFY_IS_APPROX(MatrixType::identity(rows, cols)(r,c), static_cast(r==c)); if (rows!=cols) VERIFY_RAISES_ASSERT(m3 = m1*m1); // test the previous tests were not screwed up because operator* returns 0 // (we use the more accurate default epsilon) if (NumTraits::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); } // test optimized operator+= path res = square; res += (m1 * m2.transpose()).lazy(); VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); if (NumTraits::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(res,square + m2 * m1.transpose())); } vcres = vc2; vcres += (m1.transpose() * v1).lazy(); VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); tm1 = m1; VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); // test submatrix and matrix/vector product for (int i=0; i::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); } } void test_product() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( product(Matrix3i()) ); CALL_SUBTEST( product(Matrix()) ); CALL_SUBTEST( product(Matrix4d()) ); CALL_SUBTEST( product(Matrix4f()) ); CALL_SUBTEST( product(MatrixXf(3,5)) ); CALL_SUBTEST( product(MatrixXi(28,39)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( product(MatrixXf(ei_random(1,320), ei_random(1,320))) ); CALL_SUBTEST( product(MatrixXd(ei_random(1,320), ei_random(1,320))) ); CALL_SUBTEST( product(MatrixXi(ei_random(1,256), ei_random(1,256))) ); CALL_SUBTEST( product(MatrixXcf(ei_random(1,50), ei_random(1,50))) ); #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR CALL_SUBTEST( product(Matrix(ei_random(1,320), ei_random(1,320))) ); #else CALL_SUBTEST( product(Matrix(ei_random(1,320), ei_random(1,320))) ); #endif } }