// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include Matrix4f inverse(const Matrix4f& m) { Matrix4f r; r(0,0) = m.minor(0,0).determinant(); r(1,0) = -m.minor(0,1).determinant(); r(2,0) = m.minor(0,2).determinant(); r(3,0) = -m.minor(0,3).determinant(); r(0,2) = m.minor(2,0).determinant(); r(1,2) = -m.minor(2,1).determinant(); r(2,2) = m.minor(2,2).determinant(); r(3,2) = -m.minor(2,3).determinant(); r(0,1) = -m.minor(1,0).determinant(); r(1,1) = m.minor(1,1).determinant(); r(2,1) = -m.minor(1,2).determinant(); r(3,1) = m.minor(1,3).determinant(); r(0,3) = -m.minor(3,0).determinant(); r(1,3) = m.minor(3,1).determinant(); r(2,3) = -m.minor(3,2).determinant(); r(3,3) = m.minor(3,3).determinant(); return r / (m(0,0)*r(0,0) + m(1,0)*r(0,1) + m(2,0)*r(0,2) + m(3,0)*r(0,3)); } template void inverse_permutation_4x4() { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; double error_max = 0.; Vector4i indices(0,1,2,3); for(int i = 0; i < 24; ++i) { MatrixType m = PermutationMatrix<4>(indices); MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon() ); error_max = std::max(error_max, error); std::next_permutation(indices.data(),indices.data()+4); } std::cerr << "inverse_permutation_4x4, Scalar = " << type_name() << std::endl; EIGEN_DEBUG_VAR(error_max); VERIFY(error_max < 1. ); } template void inverse_general_4x4(int repeat) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; double error_sum = 0., error_max = 0.; for(int i = 0; i < repeat; ++i) { MatrixType m; RealScalar absdet; do { m = MatrixType::Random(); absdet = ei_abs(m.determinant()); } while(absdet < 10 * epsilon()); MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon() ); error_sum += error; error_max = std::max(error_max, error); } std::cerr << "inverse_general_4x4, Scalar = " << type_name() << std::endl; double error_avg = error_sum / repeat; EIGEN_DEBUG_VAR(error_avg); EIGEN_DEBUG_VAR(error_max); VERIFY(error_avg < (NumTraits::IsComplex ? 8.4 : 1.4) ); VERIFY(error_max < (NumTraits::IsComplex ? 160.0 : 75.) ); } void test_prec_inverse_4x4() { CALL_SUBTEST_1((inverse_permutation_4x4())); CALL_SUBTEST_1(( inverse_general_4x4(200000 * g_repeat) )); CALL_SUBTEST_2((inverse_permutation_4x4 >())); CALL_SUBTEST_2(( inverse_general_4x4 >(200000 * g_repeat) )); CALL_SUBTEST_3((inverse_permutation_4x4())); CALL_SUBTEST_3((inverse_general_4x4(50000 * g_repeat))); }