// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #include "main.h" using namespace std; template void permutationmatrices(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime, Options = MatrixType::Options }; typedef PermutationMatrix LeftPermutationType; typedef Transpositions LeftTranspositionsType; typedef Matrix LeftPermutationVectorType; typedef Map MapLeftPerm; typedef PermutationMatrix RightPermutationType; typedef Transpositions RightTranspositionsType; typedef Matrix RightPermutationVectorType; typedef Map MapRightPerm; Index rows = m.rows(); Index cols = m.cols(); MatrixType m_original = MatrixType::Random(rows,cols); LeftPermutationVectorType lv; randomPermutationVector(lv, rows); LeftPermutationType lp(lv); RightPermutationVectorType rv; randomPermutationVector(rv, cols); RightPermutationType rp(rv); LeftTranspositionsType lt(lv); RightTranspositionsType rt(rv); MatrixType m_permuted = MatrixType::Random(rows,cols); VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, 1); // 1 temp for sub expression "lp * m_original" for (int i=0; i lm(lp); Matrix rm(rp); VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); m_permuted = m_original; VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, 1); VERIFY_IS_APPROX(m_permuted, lm*m_original*rm); LeftPermutationType lpi; lpi = lp.inverse(); VERIFY_IS_APPROX(lpi*m_permuted,lp.inverse()*m_permuted); VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original); VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original); VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original); VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity()); VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity()); VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity()); LeftPermutationVectorType lv2; randomPermutationVector(lv2, rows); LeftPermutationType lp2(lv2); Matrix lm2(lp2); VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast(), lm*lm2); VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast(), lm*lm2); VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast(), lm*lm2); LeftPermutationType identityp; identityp.setIdentity(rows); VERIFY_IS_APPROX(m_original, identityp*m_original); // check inplace permutations m_permuted = m_original; VERIFY_EVALUATION_COUNT(m_permuted.noalias()= lp.inverse() * m_permuted, 1); // 1 temp to allocate the mask VERIFY_IS_APPROX(m_permuted, lp.inverse()*m_original); m_permuted = m_original; VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), 1); // 1 temp to allocate the mask VERIFY_IS_APPROX(m_permuted, m_original*rp.inverse()); m_permuted = m_original; VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, 1); // 1 temp to allocate the mask VERIFY_IS_APPROX(m_permuted, lp*m_original); m_permuted = m_original; VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, 1); // 1 temp to allocate the mask VERIFY_IS_APPROX(m_permuted, m_original*rp); if(rows>1 && cols>1) { lp2 = lp; Index i = internal::random(0, rows-1); Index j; do j = internal::random(0, rows-1); while(j==i); lp2.applyTranspositionOnTheLeft(i, j); lm = lp; lm.row(i).swap(lm.row(j)); VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast()); RightPermutationType rp2 = rp; i = internal::random(0, cols-1); do j = internal::random(0, cols-1); while(j==i); rp2.applyTranspositionOnTheRight(i, j); rm = rp; rm.col(i).swap(rm.col(j)); VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast()); } { // simple compilation check Matrix A = rp; Matrix B = rp.transpose(); VERIFY_IS_APPROX(A, B.transpose()); } m_permuted = m_original; lp = lt; rp = rt; VERIFY_EVALUATION_COUNT(m_permuted = lt * m_permuted * rt, 1); VERIFY_IS_APPROX(m_permuted, lp*m_original*rp.transpose()); VERIFY_IS_APPROX(lt.inverse()*m_permuted*rt.inverse(), m_original); // Check inplace transpositions m_permuted = m_original; VERIFY_IS_APPROX(m_permuted = lt * m_permuted, lp * m_original); m_permuted = m_original; VERIFY_IS_APPROX(m_permuted = lt.inverse() * m_permuted, lp.inverse() * m_original); m_permuted = m_original; VERIFY_IS_APPROX(m_permuted = m_permuted * rt, m_original * rt); m_permuted = m_original; VERIFY_IS_APPROX(m_permuted = m_permuted * rt.inverse(), m_original * rt.inverse()); } template void bug890() { typedef Matrix MatrixType; typedef Matrix VectorType; typedef Stride S; typedef Map MapType; typedef PermutationMatrix Perm; VectorType v1(2), v2(2), op(4), rhs(2); v1 << 666,667; op << 1,0,0,1; rhs << 42,42; Perm P(2); P.indices() << 1, 0; MapType(v1.data(),2,1,S(1,1)) = P * MapType(rhs.data(),2,1,S(1,1)); VERIFY_IS_APPROX(v1, (P * rhs).eval()); MapType(v1.data(),2,1,S(1,1)) = P.inverse() * MapType(rhs.data(),2,1,S(1,1)); VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval()); } EIGEN_DECLARE_TEST(permutationmatrices) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( permutationmatrices(Matrix()) ); CALL_SUBTEST_2( permutationmatrices(Matrix3f()) ); CALL_SUBTEST_3( permutationmatrices(Matrix()) ); CALL_SUBTEST_4( permutationmatrices(Matrix4d()) ); CALL_SUBTEST_5( permutationmatrices(Matrix()) ); CALL_SUBTEST_6( permutationmatrices(Matrix(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( permutationmatrices(MatrixXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } CALL_SUBTEST_5( bug890() ); }