// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #if defined __GNUC__ && __GNUC__>=6 #pragma GCC diagnostic ignored "-Wignored-attributes" #endif // using namespace Eigen; bool g_first_pass = true; namespace Eigen { namespace internal { template T negate(const T& x) { return -x; } template Map > bits(const T& x) { return Map >(reinterpret_cast(&x)); } // The following implement bitwise operations on floating point types template T apply_bit_op(Bits a, Bits b, Func f) { Array data; T res; for(Index i = 0; i < data.size(); ++i) data[i] = f(a[i], b[i]); // Note: The reinterpret_cast works around GCC's class-memaccess warnings: std::memcpy(reinterpret_cast(&res), data.data(), sizeof(T)); return res; } #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \ template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ return apply_bit_op(bits(a),bits(b),FUNC); \ } #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,bfloat16) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex) \ EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex) EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor()) EIGEN_TEST_MAKE_BITWISE(and,std::bit_and()) EIGEN_TEST_MAKE_BITWISE(or, std::bit_or()) struct bit_andnot{ template T operator()(T a, T b) const { return a & (~b); } }; EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) template bool biteq(T a, T b) { return (bits(a) == bits(b)).all(); } } namespace test { // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. template EIGEN_DONT_INLINE bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits::Real& refvalue) { return internal::isMuchSmallerThan(a-b, refvalue); } template inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) { std::cout << "ref: [" << Map >(ref,size) << "]" << " != vec: [" << Map >(vec,size) << "]\n"; } template bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits::Real& refvalue) { for (int i=0; i bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i bool areEqual(const Scalar* a, const Scalar* b, int size) { for (int i=0; i(data1))); \ VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ } // Checks component-wise for input of size N. All of data1, data2, and ref // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory // access errors. #define CHECK_CWISE1_N(REFOP, POP, N) { \ for (int i=0; i(data1 + j))); \ VERIFY(test::areApprox(ref, data2, N) && #POP); \ } template struct packet_helper { template inline Packet load(const T* from) const { return internal::pload(from); } template inline Packet loadu(const T* from) const { return internal::ploadu(from); } template inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu(from, umask); } template inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } template inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); } template inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { return packet; } }; template struct packet_helper { template inline T load(const T* from) const { return *from; } template inline T loadu(const T* from) const { return *from; } template inline T load(const T* from, unsigned long long) const { return *from; } template inline void store(T* to, const T& x) const { *to = x; } template inline void store(T* to, const T& x, unsigned long long) const { *to = x; } template inline T& forward_reference(Packet& /*packet*/, T& scalar) const { return scalar; } }; #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ test::packet_helper h; \ for (int i=0; i h; \ for (int i=0; i h; \ for (int i=0; i h; \ for (int i=0; i h; \ for (int i = 0; i < PacketSize; ++i) \ ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize], \ data1[i + 2 * PacketSize])); \ h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \ h.load(data1 + 2 * PacketSize))); \ VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ } // Specialize the runall struct in your test file by defining run(). template< typename Scalar, typename PacketType, bool IsComplex = NumTraits::IsComplex, bool IsInteger = NumTraits::IsInteger> struct runall; template< typename Scalar, typename PacketType = typename internal::packet_traits::type, bool Vectorized = internal::packet_traits::Vectorizable, bool HasHalf = !internal::is_same::half,PacketType>::value > struct runner; template struct runner { static void run() { runall::run(); runner::half>::run(); } }; template struct runner { static void run() { runall::run(); } }; template struct runner { static void run() { runall::run(); } }; } }