// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . // work around "uninitialized" warnings and give that option some testing #define EIGEN_INITIALIZE_MATRICES_BY_ZERO #ifndef EIGEN_NO_STATIC_ASSERT #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them #endif #ifndef EIGEN_DONT_VECTORIZE #define EIGEN_DONT_VECTORIZE // SSE intrinsics aren't designed to allow mixing types #endif #include "main.h" using namespace std; template void mixingtypes(int size = SizeAtCompileType) { typedef Matrix Mat_f; typedef Matrix Mat_d; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix Vec_f; typedef Matrix Vec_d; typedef Matrix, SizeAtCompileType, 1> Vec_cf; typedef Matrix, SizeAtCompileType, 1> Vec_cd; Mat_f mf = Mat_f::Random(size,size); Mat_d md = mf.template cast(); Mat_cf mcf = Mat_cf::Random(size,size); Mat_cd mcd = mcf.template cast >(); Vec_f vf = Vec_f::Random(size,1); Vec_d vd = vf.template cast(); Vec_cf vcf = Vec_cf::Random(size,1); Vec_cd vcd = vcf.template cast >(); float sf = ei_random(); double sd = ei_random(); complex scf = ei_random >(); complex scd = ei_random >(); mf+mf; VERIFY_RAISES_ASSERT(mf+md); VERIFY_RAISES_ASSERT(mf+mcf); VERIFY_RAISES_ASSERT(vf=vd); VERIFY_RAISES_ASSERT(vf+=vd); VERIFY_RAISES_ASSERT(mcd=md); // check scalar products VERIFY_IS_APPROX(vcf * sf , vcf * complex(sf)); VERIFY_IS_APPROX(sd * vcd, complex(sd) * vcd); VERIFY_IS_APPROX(vf * scf , vf.template cast >() * scf); VERIFY_IS_APPROX(scd * vd, scd * vd.template cast >()); // check dot product vf.dot(vf); #if 0 // we get other compilation errors here than just static asserts VERIFY_RAISES_ASSERT(vd.dot(vf)); #endif VERIFY_RAISES_ASSERT(vcf.dot(vf)); // yeah eventually we should allow this but i'm too lazy to make that change now in Dot.h // especially as that might be rewritten as cwise product .sum() which would make that automatic. // check diagonal product VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast >().asDiagonal() * mcf); VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast >()); VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast >().asDiagonal()); VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast >() * vcd.asDiagonal()); // vd.asDiagonal() * mf; // does not even compile // vcd.asDiagonal() * mf; // does not even compile // check inner product VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast >().transpose() * vcf).value()); // check outer product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); // coeff wise product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); Mat_cd mcd2 = mcd; VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast >()); } void mixingtypes_large(int size) { static const int SizeAtCompileType = Dynamic; typedef Matrix Mat_f; typedef Matrix Mat_d; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix Vec_f; typedef Matrix Vec_d; typedef Matrix, SizeAtCompileType, 1> Vec_cf; typedef Matrix, SizeAtCompileType, 1> Vec_cd; Mat_f mf(size,size); Mat_d md(size,size); Mat_cf mcf(size,size); Mat_cd mcd(size,size); Vec_f vf(size,1); Vec_d vd(size,1); Vec_cf vcf(size,1); Vec_cd vcd(size,1); mf*mf; // FIXME large products does not allow mixing types VERIFY_RAISES_ASSERT(md*mcd); VERIFY_RAISES_ASSERT(mcd*md); VERIFY_RAISES_ASSERT(mf*vcf); VERIFY_RAISES_ASSERT(mcf*vf); // VERIFY_RAISES_ASSERT(mcf *= mf); // does not even compile // VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile (cannot convert complex to double) VERIFY_RAISES_ASSERT(vcf = mcf*vf); // VERIFY_RAISES_ASSERT(mf*md); // does not even compile // VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile // VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile VERIFY_RAISES_ASSERT(vcf = mf*vf); } template void mixingtypes_small() { int size = SizeAtCompileType; typedef Matrix Mat_f; typedef Matrix Mat_d; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix Vec_f; typedef Matrix Vec_d; typedef Matrix, SizeAtCompileType, 1> Vec_cf; typedef Matrix, SizeAtCompileType, 1> Vec_cd; Mat_f mf(size,size); Mat_d md(size,size); Mat_cf mcf(size,size); Mat_cd mcd(size,size); Vec_f vf(size,1); Vec_d vd(size,1); Vec_cf vcf(size,1); Vec_cd vcd(size,1); mf*mf; // FIXME shall we discard those products ? // 1) currently they work only if SizeAtCompileType is small enough // 2) in case we vectorize complexes this might be difficult to still allow that md*mcd; mcd*md; mf*vcf; mcf*vf; mcf *= mf; vcd = md*vcd; vcf = mcf*vf; // VERIFY_RAISES_ASSERT(mf*md); // does not even compile // VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile // VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile VERIFY_RAISES_ASSERT(vcf = mf*vf); } void test_mixingtypes() { // check that our operator new is indeed called: CALL_SUBTEST_1(mixingtypes<3>()); CALL_SUBTEST_2(mixingtypes<4>()); CALL_SUBTEST_3(mixingtypes(20)); CALL_SUBTEST_4(mixingtypes_small<4>()); CALL_SUBTEST_5(mixingtypes_large(20)); }