// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; Index size = m.size(); VectorType v = VectorType::Random(size); Index arraysize = 3*size; Scalar* array = internal::aligned_new(arraysize); { Map > map(array, size); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[3*i] == v[i]); VERIFY(map[i] == v[i]); } } { Map > map(array, size, InnerStride(2)); map = v; for(int i = 0; i < size; ++i) { VERIFY(array[2*i] == v[i]); VERIFY(map[i] == v[i]); } } internal::aligned_delete(array, arraysize); } template void map_class_matrix(const MatrixType& _m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index rows = _m.rows(), cols = _m.cols(); MatrixType m = MatrixType::Random(rows,cols); Index arraysize = 2*(rows+4)*(cols+4); Scalar* array = internal::aligned_new(arraysize); // test no inner stride and some dynamic outer stride { Map > map(array, rows, cols, OuterStride(m.innerSize()+1)); map = m; VERIFY(map.outerStride() == map.innerSize()+1); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, // this allows to hit the special case where it's vectorizable. { enum { InnerSize = MatrixType::InnerSizeAtCompileTime, OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 }; Map > map(array, rows, cols, OuterStride(m.innerSize()+4)); map = m; VERIFY(map.outerStride() == map.innerSize()+4); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } // test both inner stride and outer stride { Map > map(array, rows, cols, Stride(2*m.innerSize()+1, 2)); map = m; VERIFY(map.outerStride() == 2*map.innerSize()+1); VERIFY(map.innerStride() == 2); for(int i = 0; i < m.outerSize(); ++i) for(int j = 0; j < m.innerSize(); ++j) { VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); } } internal::aligned_delete(array, arraysize); } void test_mapstride() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( map_class_vector(Matrix()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); CALL_SUBTEST_1( map_class_matrix(Matrix()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_3( map_class_matrix(Matrix()) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random(1,10),internal::random(1,10))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(5,5)));//internal::random(1,10),internal::random(1,10))) ); } }