// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_NO_STATIC_ASSERT #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them #endif #include "main.h" template void map_class_vector(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; Index size = m.size(); // test Map.h Scalar* array1 = internal::aligned_new(size); Scalar* array2 = internal::aligned_new(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3; Map(array1, size) = VectorType::Random(size); Map(array2, size) = Map(array1, size); Map(array3unaligned, size) = Map(array1, size); VectorType ma1 = Map(array1, size); VectorType ma2 = Map(array2, size); VectorType ma3 = Map(array3unaligned, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); #ifdef EIGEN_VECTORIZE VERIFY_RAISES_ASSERT((Map(array3unaligned, size))) #endif internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void map_class_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; Index rows = m.rows(), cols = m.cols(), size = rows*cols; // test Map.h Scalar* array1 = internal::aligned_new(size); for(int i = 0; i < size; i++) array1[i] = Scalar(1); Scalar* array2 = internal::aligned_new(size); for(int i = 0; i < size; i++) array2[i] = Scalar(1); Scalar* array3 = new Scalar[size+1]; for(int i = 0; i < size+1; i++) array3[i] = Scalar(1); Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3; Map(array1, rows, cols) = MatrixType::Ones(rows,cols); Map(array2, rows, cols) = Map(array1, rows, cols); Map(array3unaligned, rows, cols) = Map(array1, rows, cols); MatrixType ma1 = Map(array1, rows, cols); MatrixType ma2 = Map(array2, rows, cols); VERIFY_IS_EQUAL(ma1, ma2); MatrixType ma3 = Map(array3unaligned, rows, cols); VERIFY_IS_EQUAL(ma1, ma3); internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void map_static_methods(const VectorType& m) { typedef typename VectorType::Index Index; typedef typename VectorType::Scalar Scalar; Index size = m.size(); // test Map.h Scalar* array1 = internal::aligned_new(size); Scalar* array2 = internal::aligned_new(size); Scalar* array3 = new Scalar[size+1]; Scalar* array3unaligned = size_t(array3)%16 == 0 ? array3+1 : array3; VectorType::MapAligned(array1, size) = VectorType::Random(size); VectorType::Map(array2, size) = VectorType::Map(array1, size); VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); VectorType ma1 = VectorType::Map(array1, size); VectorType ma2 = VectorType::MapAligned(array2, size); VectorType ma3 = VectorType::Map(array3unaligned, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void check_const_correctness(const PlainObjectType&) { typedef typename PlainObjectType::Index Index; typedef typename PlainObjectType::Scalar Scalar; // there's a lot that we can't test here while still having this test compile! // the only possible approach would be to run a script trying to compile stuff and checking that it fails. // CMake can help with that. // verify that map-to-const don't have LvalueBit typedef typename internal::add_const::type ConstPlainObjectType; VERIFY( !(internal::traits >::Flags & LvalueBit) ); VERIFY( !(internal::traits >::Flags & LvalueBit) ); VERIFY( !(Map::Flags & LvalueBit) ); VERIFY( !(Map::Flags & LvalueBit) ); } void test_map() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( map_class_vector(Matrix()) ); CALL_SUBTEST_1( check_const_correctness(Matrix()) ); CALL_SUBTEST_2( map_class_vector(Vector4d()) ); CALL_SUBTEST_2( check_const_correctness(Matrix4d()) ); CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) ); CALL_SUBTEST_1( map_class_matrix(Matrix()) ); CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); CALL_SUBTEST_11( map_class_matrix(Matrix()) ); CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random(1,10),internal::random(1,10))) ); CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random(1,10),internal::random(1,10))) ); CALL_SUBTEST_6( map_static_methods(Matrix()) ); CALL_SUBTEST_7( map_static_methods(Vector3f()) ); CALL_SUBTEST_8( map_static_methods(RowVector3d()) ); CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) ); CALL_SUBTEST_10( map_static_methods(VectorXf(12)) ); } }