// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void jacobi(const MatrixType& m = MatrixType()) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols(); enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; typedef Matrix JacobiVector; const MatrixType a(MatrixType::Random(rows, cols)); JacobiVector v = JacobiVector::Random().normalized(); JacobiScalar c = v.x(), s = v.y(); JacobiRotation rot(c, s); { Index p = internal::random(0, rows-1); Index q; do { q = internal::random(0, rows-1); } while (q == p); MatrixType b = a; b.applyOnTheLeft(p, q, rot); VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q)); VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q)); } { Index p = internal::random(0, cols-1); Index q; do { q = internal::random(0, cols-1); } while (q == p); MatrixType b = a; b.applyOnTheRight(p, q, rot); VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q)); VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q)); } } void test_jacobi() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( jacobi() )); CALL_SUBTEST_2(( jacobi() )); CALL_SUBTEST_3(( jacobi() )); CALL_SUBTEST_3(( jacobi >() )); int r = internal::random(2, 20), c = internal::random(2, 20); CALL_SUBTEST_4(( jacobi(MatrixXf(r,c)) )); CALL_SUBTEST_5(( jacobi(MatrixXcd(r,c)) )); CALL_SUBTEST_5(( jacobi >(MatrixXcd(r,c)) )); // complex is really important to test as it is the only way to cover conjugation issues in certain unaligned paths CALL_SUBTEST_6(( jacobi(MatrixXcf(r,c)) )); CALL_SUBTEST_6(( jacobi >(MatrixXcf(r,c)) )); (void) r; (void) c; } }