// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void inverse(const MatrixType& m) { /* this test covers the following files: Inverse.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows); if (ei_is_same_type::ret) { // let's build a more stable to inverse matrix MatrixType a = MatrixType::Random(rows,cols); m1 += m1 * m1.adjoint() + a * a.adjoint(); } m2 = m1.inverse(); VERIFY_IS_APPROX(m1, m2.inverse() ); m1.computeInverse(&m2); VERIFY_IS_APPROX(m1, m2.inverse() ); VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); // since for the general case we implement separately row-major and col-major, test that VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); } void test_inverse() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( inverse(Matrix()) ); CALL_SUBTEST( inverse(Matrix2d()) ); CALL_SUBTEST( inverse(Matrix3f()) ); CALL_SUBTEST( inverse(Matrix4f()) ); CALL_SUBTEST( inverse(MatrixXf(8,8)) ); CALL_SUBTEST( inverse(MatrixXcd(7,7)) ); } // test some tricky cases for 4x4 matrices VERIFY_IS_APPROX((Matrix4f() << 0,0,1,0, 1,0,0,0, 0,1,0,0, 0,0,0,1).finished().inverse(), (Matrix4f() << 0,1,0,0, 0,0,1,0, 1,0,0,0, 0,0,0,1).finished()); VERIFY_IS_APPROX((Matrix4f() << 1,0,0,0, 0,0,1,0, 0,0,0,1, 0,1,0,0).finished().inverse(), (Matrix4f() << 1,0,0,0, 0,0,0,1, 0,1,0,0, 0,0,1,0).finished()); }