// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template void geometry(void) { /* this test covers the following files: Cross.h Quaternion.h, Transform.cpp */ typedef Matrix Matrix2; typedef Matrix Matrix3; typedef Matrix Matrix4; typedef Matrix Vector2; typedef Matrix Vector3; typedef Matrix Vector4; typedef Quaternion Quaternion; typedef AngleAxis AngleAxis; Quaternion q1, q2; Vector3 v0 = test_random_matrix(), v1 = test_random_matrix(), v2 = test_random_matrix(); Vector2 u0 = test_random_matrix(); Matrix3 matrot1; Scalar a = ei_random(-M_PI, M_PI); // cross product VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); Matrix3 m; m << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(m.isUnitary()); // unitOrthogonal VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().dot(u0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); VERIFY_IS_APPROX(v0, AngleAxis(a, v0.normalized()) * v0); VERIFY_IS_APPROX(-v0, AngleAxis(M_PI, v0.unitOrthogonal()) * v0); VERIFY_IS_APPROX(cos(a)*v0.norm2(), v0.dot(AngleAxis(a, v0.unitOrthogonal()) * v0)); m = AngleAxis(a, v0.normalized()).toRotationMatrix().adjoint(); VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxis(a, v0.normalized())); VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxis(a, v0.normalized()) * m); q1 = AngleAxis(a, v0.normalized()); q2 = AngleAxis(a, v1.normalized()); // rotation matrix conversion VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2); VERIFY( !(q2 * q1 * v2).isApprox( q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); q2 = q1.toRotationMatrix(); VERIFY_IS_APPROX(q1*v1,q2*v1); matrot1 = AngleAxis(0.1, Vector3::UnitX()) * AngleAxis(0.2, Vector3::UnitY()) * AngleAxis(0.3, Vector3::UnitZ()); VERIFY_IS_APPROX(matrot1 * v1, AngleAxis(0.1, Vector3(1,0,0)).toRotationMatrix() * (AngleAxis(0.2, Vector3(0,1,0)).toRotationMatrix() * (AngleAxis(0.3, Vector3(0,0,1)).toRotationMatrix() * v1))); // angle-axis conversion AngleAxis aa = q1; VERIFY_IS_APPROX(q1 * v1, Quaternion(aa) * v1); VERIFY_IS_NOT_APPROX(q1 * v1, Quaternion(AngleAxis(aa.angle()*2,aa.axis())) * v1); // from two vector creation VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); // inverse and conjugate VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); // AngleAxis VERIFY_IS_APPROX(AngleAxis(a,v1.normalized()).toRotationMatrix(), Quaternion(AngleAxis(a,v1.normalized())).toRotationMatrix()); AngleAxis aa1; m = q1.toRotationMatrix(); aa1 = m; VERIFY_IS_APPROX(AngleAxis(m).toRotationMatrix(), Quaternion(m).toRotationMatrix()); // Transform // TODO complete the tests ! typedef Transform Transform2; typedef Transform Transform3; a = 0; while (ei_abs(a)<0.1) a = ei_random(-0.4*M_PI, 0.4*M_PI); q1 = AngleAxis(a, v0.normalized()); Transform3 t0, t1, t2; t0.setIdentity(); t0.linear() = q1.toRotationMatrix(); t1.setIdentity(); t1.linear() = q1.toRotationMatrix(); v0 << 50, 2, 1;//= test_random_matrix().cwiseProduct(Vector3(10,2,0.5)); t0.scale(v0); t1.prescale(v0); VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); t0.setIdentity(); t1.setIdentity(); v1 << 1, 2, 3; t0.linear() = q1.toRotationMatrix(); t0.pretranslate(v0); t0.scale(v1); t1.linear() = q1.conjugate().toRotationMatrix(); t1.prescale(v1.cwise().inverse()); t1.translate(-v0); VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision())); t1.fromPositionOrientationScale(v0, q1, v1); VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); // 2D transformation Transform2 t20, t21; Vector2 v20 = test_random_matrix(); Vector2 v21 = test_random_matrix(); for (int k=0; k<2; ++k) if (ei_abs(v21[k])<1e-3) v21[k] = 1e-3; t21.setIdentity(); t21.linear() = Rotation2D(a).toRotationMatrix(); VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), t21.pretranslate(v20).scale(v21).matrix()); t21.setIdentity(); t21.linear() = Rotation2D(-a).toRotationMatrix(); VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).isIdentity(test_precision()) ); } void test_geometry() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( geometry() ); CALL_SUBTEST( geometry() ); } }