// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2009 Mathieu Gautier // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include #include template void quaternion(void) { /* this test covers the following files: Quaternion.h */ typedef Matrix Matrix3; typedef Matrix Vector3; typedef Quaternion Quaternionx; typedef AngleAxis AngleAxisx; Scalar largeEps = test_precision(); if (ei_is_same_type::ret) largeEps = 1e-3f; Scalar eps = ei_random() * 1e-2; Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(), v3 = Vector3::Random(); Scalar a = ei_random(-Scalar(M_PI), Scalar(M_PI)); // Quaternion: Identity(), setIdentity(); Quaternionx q1, q2; q2.setIdentity(); VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); q1.coeffs().setRandom(); VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); q1 = AngleAxisx(a, v0.normalized()); q2 = AngleAxisx(a, v1.normalized()); // angular distance Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); if (refangle>Scalar(M_PI)) refangle = Scalar(2)*Scalar(M_PI) - refangle; if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) { VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); } // rotation matrix conversion VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2); VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); q2 = q1.toRotationMatrix(); VERIFY_IS_APPROX(q1*v1,q2*v1); // angle-axis conversion AngleAxisx aa = AngleAxisx(q1); VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); // from two vector creation VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); if (ei_is_same_type::ret) { v3 = v1.cwise()+eps; VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); } // inverse and conjugate VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); // test casting Quaternion q1f = q1.template cast(); VERIFY_IS_APPROX(q1f.template cast(),q1); Quaternion q1d = q1.template cast(); VERIFY_IS_APPROX(q1d.template cast(),q1); } template void mapQuaternion(void){ typedef Map, Aligned> MQuaternionA; typedef Map > MQuaternionUA; typedef Quaternion Quaternionx; EIGEN_ALIGN16 Scalar array1[4]; EIGEN_ALIGN16 Scalar array2[4]; EIGEN_ALIGN16 Scalar array3[4+1]; Scalar* array3unaligned = array3+1; MQuaternionA(array1).coeffs().setRandom(); (MQuaternionA(array2)) = MQuaternionA(array1); (MQuaternionUA(array3unaligned)) = MQuaternionA(array1); Quaternionx q1 = MQuaternionA(array1); Quaternionx q2 = MQuaternionA(array2); Quaternionx q3 = MQuaternionUA(array3unaligned); VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); } void test_geo_quaternion() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( quaternion() ); CALL_SUBTEST_2( quaternion() ); CALL_SUBTEST( mapQuaternion() ); CALL_SUBTEST( mapQuaternion() ); } }